Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 11(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37317317

ABSTRACT

Soil microbial and enzyme activities are closely related to the spatial variability of soil environmental conditions at the microscale (µm-mm). The origin and localization of the enzymes are somewhat neglected when the measured activity is used to evaluate specific soil functions. The activity of four hydrolytic enzymes (ß-glucosidase, Cellobiohydrolase, Chitinase, Xylanase) and microbial diversity based on community-level physiological profiling were determined in samples of arable and native Phaeozems with increasing physical impact to soil solids. The level of impact on the soil solids had a significant effect on enzyme activity and depended on both the enzyme type and soil land use. The highest proportion of the activity of Xylanase and Cellobiohydrolase of arable Phaeozem was determined at the dispersion energy in the range of 450-650 J·mL-1 and was associated with the primary soil particles' hierarchy level. The highest proportions of ß-glucosidase and Chitinase activities were determined for forest Phaeozem after applying energies lower than 150 J·mL-1 and characterizing the level of soil microaggregates. The increased activity of Xylanase and Cellobiohydrolase in primary soil particles of arable soil compared to those in forest soil might be a reflection of the substrates being unavailable to decomposition, leading to enzyme accumulation on the solid surface. For the Phaeozems, the lower the level of soil microstructure organization, the greater the differences observed between soils of different land use type, i.e., microbial communities, associated with lower microstructure levels, were more specific to land use type.

2.
Astrobiology ; 21(10): 1186-1205, 2021 10.
Article in English | MEDLINE | ID: mdl-34255549

ABSTRACT

The search for life beyond Earth has focused on Mars and the icy moons Europa and Enceladus, all of which are considered a safe haven for life due to evidence of current or past water. The surface of Venus, on the other hand, has extreme conditions that make it a nonhabitable environment to life as we know it. This is in contrast, however, to its cloud layer, which, while still an extreme environment, may prove to be a safe haven for some extreme forms of life similar to extremophiles on Earth. We consider the venusian clouds a habitable environment based on the presence of (1) a solvent for biochemical reactions, (2) appropriate physicochemical conditions, (3) available energy, and (4) biologically relevant elements. The diversity of extreme microbial ecosystems on Earth has allowed us to identify terrestrial chemolithoautotrophic microorganisms that may be analogs to putative venusian organisms. Here, we hypothesize and describe biological processes that may be performed by such organisms in the venusian clouds. To detect putative venusian organisms, we describe potential biosignature detection methods, which include metal-microbial interactions and optical methods. Finally, we describe currently available technology that can potentially be used for modeling and simulation experiments.


Subject(s)
Jupiter , Venus , Ecosystem , Exobiology , Extraterrestrial Environment
3.
Microorganisms ; 9(1)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477915

ABSTRACT

Ionizing radiation is one of the main factors limiting the survival of microorganisms in extraterrestrial conditions. The survivability of microorganisms under irradiation depends significantly on the conditions, in which the irradiation occurs. In particular, temperature, pressure, oxygen and water concentrations are of great influence. However, the influence of factors such as the radiation intensity (in low-temperature conditions) and the type of mineral matrix, in which microorganisms are located, has been practically unstudied. It has been shown that the radioresistance of bacteria can increase after their exposure to sublethal doses and subsequent repair of damage under favorable conditions, however, such studies are also few and the influence of other factors of extraterrestrial space (temperature, pressure) was not studied in them. The viability of bacteria Arthrobacter polychromogenes, Kocuria rosea and Xanthomonas sp. after irradiation with gamma radiation at a dose of 1 kGy under conditions of low pressure (1 Torr) and low temperature (-50 °C) at different radiation intensities (4 vs. 0.8 kGy/h) with immobilization of bacteria on various mineral matrices (montmorillonite vs. analogue of lunar dust) has been studied. Native, previously non-irradiated strains, and strains that were previously irradiated with gamma radiation and subjected to 10 passages of cultivation on solid media were irradiated. The number of survived cells was determined by culturing on a solid medium. It has been shown that the radioresistance of bacteria depends significantly on the type of mineral matrix, on which they are immobilized, wherein montmorillonite contributes to an increased survivability in comparison with a silicate matrix. Survivability of the studied bacteria was found to increase with decreasing radiation intensity, despite the impossibility of active reparation processes under experimental conditions. Considering the low intensity of radiation on various space objects in comparison with radiobiological experiments, this suggests a longer preservation of the viable microorganisms outside the Earth than is commonly believed. An increase in bacterial radioresistance was revealed even after one cycle of irradiation of the strains and their subsequent cultivation under favourable conditions. This indicates the possibility of hypothetical microorganisms on Mars increasing their radioresistance.

4.
AIMS Microbiol ; 4(3): 541-562, 2018.
Article in English | MEDLINE | ID: mdl-31294232

ABSTRACT

At present, the surface of Mars is affected by a set of factors that can prevent the survival of Earth-like life. However, the modern concept of the evolution of the planet assumes the existence more favorable for life climate in the past. If in the past on Mars had formed a biosphere, similar to the one that originated in the early Earth, it is supposed that it is preserved till now in anabiotic state in the bowels of the planet, like microbial communities inhabiting the ancient permafrost of Arctic and Antarctic. In the conditions of modern Martian regolith, this relic life seems to be deprived of the possibility of damage reparation (or these processes occur on a geological time scale), and ionizing radiation should be considered the main factor inhibiting such anabiotic life. In the present study, we studied soil samples, selected in two different extreme habitats of the Earth: ancient permafrost from the Dry Valleys of Antarctica and Xerosol soil from the mountain desert in Morocco, gamma-irradiated with 40 kGy dose at low pressure (1 Torr) and low temperature (-50 °C). Microbial communities inhabiting these samples showed in situ high resistance to the applied effects, retained high number of viable cells, metabolic activity, and high biodiversity. Based on the results, it is assumed that the putative biosphere could be preserved in the dormant state for at least 500 thousand years and 8 million years in the surface layer of Mars regolith and at 5 m depth, respectively, at the current level of ionizing radiation intensity.

5.
AIMS Microbiol ; 4(4): 685-710, 2018.
Article in English | MEDLINE | ID: mdl-31294242

ABSTRACT

The purpose of this research was to investigate the structure of soil bacteria communities present in the Gibson (Australia) and the Sahara (Egypt) deserts, as well as to estimate strain survivability under different environmental factors. It should be noticed that the screening of bacterial resistance to wide spectra of principally different stress conditions was performed for the first time. Experiments were conducted with culturable bacterial communities. Strains were identified using 16S rRNA sequencing, and stress-tolerance was estimated by growing strains in various nutrient media. In order to characterize the community the epifluorescent microscopy and multisubstrate testing were also performed. High bacterial abundance in the desert soils was detected, and there was seen a significant proportion of culturable cells. The close numbers of psychotropic and mesophilic bacteria in arid ecosystems were revealed. The representatives of the Actinobacteria phylum were dominant in the microbial communities, and Firmicutes, Proteobacteria, and Bacteroidetes phyla representatives were also identified. Tolerance of the axenic bacterial cultures, isolated from arid desert ecotopes, to temperature, pH, salts (KCl, NaCl, MgSO4, NaHCO3), strong oxidizers (Mg(ClO4)2), and antibiotics (ampicillin, cephalexin, chloramphenicol, tetracycline, doxycycline, kanamycin, rifampicin) was studied. The bacterial isolates were characterized by polyextremotolerance and by the ability to maintain metabolic activity in vitro while influenced by a wide range of physicochemical and biotic factors.

6.
Extremophiles ; 21(6): 1057-1067, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28993922

ABSTRACT

This research aimed to investigate the viability and biodiversity of microbial communities within ancient Arctic permafrost after exposure to a gamma-radiation dose of 100 kGy at low temperature (- 50 °C), low pressure (1 Torr) and dehydration conditions. The main objective was to assess the possibility for long-term survival of Earth-bound microorganisms in the subsurface of Martian regolith or inside small space bodies at constant absorption and accumulation of the gamma radiation dose. Investigated microbial communities had shown high resistance to a simulated Martian environment. After irradiation the total count of prokaryotic cells and number of metabolically active bacterial cells remained at the control level, while the number of bacterial CFUs decreased by 2 orders of magnitude, and the number of metabolically active cells of archaea decreased threefold. Besides, the abundance of culturable bacteria after irradiation was kept at a high level: not less than 3.7 × 105 cells/g. Potential metabolic activity of irradiated microbial communities in general were higher than in the control sample. A fairly high biodiversity of bacteria was detected in the exposed sample of permafrost, although the microbial community structure underwent significant changes after irradiation. In particular, actinobacteria populations of the genus Arthrobacter, which was not revealed in the control samples, became predominant in bacterial communities following the exposure. The results of the study testify that long-term preservation of microbial life inside Martian permafrost is possible. The data obtained can also be evaluated from the perspective of the potential for discovering viable Earth-bound microorganisms on other objects in the Solar system and inside of small bodies in outer space.


Subject(s)
Extraterrestrial Environment , Microbiota , Permafrost/microbiology , Radiation Tolerance , Acclimatization , Archaea/isolation & purification , Archaea/physiology , Archaea/radiation effects , Arctic Regions , Arthrobacter/isolation & purification , Arthrobacter/physiology , Arthrobacter/radiation effects , Gamma Rays , Mars
SELECTION OF CITATIONS
SEARCH DETAIL
...