Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 187: 106307, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37739136

ABSTRACT

Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aß plaques, immunostaining revealed that both intracellular Aß1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.

2.
J Control Release ; 361: 636-658, 2023 09.
Article in English | MEDLINE | ID: mdl-37544515

ABSTRACT

Delivery of therapeutic substances into the brain poses a significant challenge in the treatment of neurological disorders. This is primarily due to the blood-brain barrier (BBB), which restricts access, alongside the limited stability and distribution of these agents within the brain tissue. Here we demonstrate an efficient delivery of microRNA (miRNA) and antisense RNA preferentially to neurons compared to astroglia in the brain of healthy and Alzheimer's disease mice, via disulfide-linked conjugation with poly(ß-L-malic acid-trileucine)-copolymer a biodegradable, amphiphilic, and multivalent platform. By conjugating a D-configured (D3)-peptide (vector) for specific targeting, highly efficient delivery across the BBB is achieved through the Low-Density Lipoprotein Receptor-Related Protein-1 (LRP-1) transcytosis pathway, amyloid beta (Aß) peptides. Nanodrug distribution was determined by fluorescent labeling and analyzed by microscopy in neurons, astroglia, and in extracellular amyloid plaques typical for Alzheimer's disease. Whereas D-configured BBB-vectors can efficiently target neurons, L-configured (e.g., AP2-peptide) guided vector can only cross BBB but not seem to bind neurons. An analysis of post-injection fluorescence distribution, and RNA-seq followed by real-time PCR validation, confirmed a successful in vivo delivery of morpholino-miRNA-186 nanoconjugates into mouse brain. The size and fluorescence intensity of the intracellular nanodrug particulates were analyzed and verified by a competition with non-fluorescent conjugates. Differentially expressed genes (DEGs) from RNA-seq were identified in the nanodrug injected mice, and the changes of selected DEGs related to Alzheimer's disease were further validated by western blot and real-time PCR. Collectively, these results demonstrated that D3-peptide-conjugated nanopolymer drug is able to achieve neuron-selective delivery of miRNA and can serve as an efficient brain delivery vehicle in Alzheimer's disease (AD) mouse models.


Subject(s)
Alzheimer Disease , MicroRNAs , Nucleic Acids , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Nucleic Acids/therapeutic use , Brain/metabolism , Blood-Brain Barrier/metabolism , Nanoconjugates/therapeutic use , MicroRNAs/therapeutic use , Neurons/metabolism , Disease Models, Animal , Mice, Transgenic
3.
Cancer Biother Radiopharm ; 38(3): 160-172, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36350709

ABSTRACT

This proceeding article compiles current research on the development of boron delivery drugs for boron neutron capture therapy that was presented and discussed at the National Cancer Institute (NCI) Workshop on Neutron Capture Therapy that took place on April 20-22, 2022. The most used boron sources are icosahedral boron clusters attached to peptides, proteins (such as albumin), porphyrin derivatives, dendrimers, polymers, and nanoparticles, or encapsulated into liposomes. These boron clusters and/or carriers can be labeled with contrast agents allowing for the use of imaging techniques, such as PET, SPECT, and fluorescence, that enable quantification of tumor-localized boron and their use as theranostic agents.


Subject(s)
Boron Neutron Capture Therapy , Neoplasms , Humans , Boron/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Neoplasms/drug therapy , Liposomes , Contrast Media , Boron Neutron Capture Therapy/methods
4.
Cancer Drug Resist ; 6(4): 688-708, 2023.
Article in English | MEDLINE | ID: mdl-38239396

ABSTRACT

As the most common and aggressive type of primary brain tumor in adults, glioblastoma is estimated to end over 10,000 lives each year in the United States alone. Stand treatment for glioblastoma, including surgery followed by radiotherapy and chemotherapy (i.e., Temozolomide), has been largely unchanged since early 2000. Cancer immunotherapy has significantly shifted the paradigm of cancer management in the past decade with various degrees of success in treating many hematopoietic cancers and some solid tumors, such as melanoma and non-small cell lung cancer (NSCLC). However, little progress has been made in the field of neuro-oncology, especially in the application of immunotherapy to glioblastoma treatment. In this review, we attempted to summarize the common drug resistance mechanisms in glioblastoma from Temozolomide to immunotherapy. Our intent is not to repeat the well-known difficulty in the area of neuro-oncology, such as the blood-brain barrier, but to provide some fresh insights into the molecular mechanisms responsible for resistance by summarizing some of the most recent literature. Through this review, we also hope to share some new ideas for improving the immunotherapy outcome of glioblastoma treatment.

5.
Nanomaterials (Basel) ; 11(5)2021 Apr 25.
Article in English | MEDLINE | ID: mdl-33923050

ABSTRACT

Magneto-plasmonic nanocomposites can possess properties inherent to both individual components (iron oxide and gold nanoparticles) and are reported to demonstrate high potential in targeted drug delivery and therapy. Herein, we report on Fe3O4/Au magneto-plasmonic nanocomposites (MPNC) synthesized with the use of amino acid tryptophan via chemical and photochemical reduction of Au ions in the presence of nanosized magnetite. The magnetic field (MF) induced aggregation was accompanied by an increase in the absorption in the near-infrared (NIR) spectral region, which was demonstrated to provide an enhanced photothermal (PT) effect under NIR laser irradiation (at 808 nm). A possibility for therapeutic application of the MPNC was illustrated using cancer cells in vitro. Cultured HeLa cells were treated by MPNC in the presence of MF and without it, following laser irradiation and imaging using confocal laser scanning microscopy. After scanning laser irradiation of the MPNC/MF treated cells, a formation and rise of photothermally-induced microbubbles on the cell surfaces was observed, leading to a damage of the cell membrane and cell destruction. We conclude that the synthesized magneto-plasmonic Fe3O4/Au nanosystems exhibit magnetic field-induced reversible aggregation accompanied by an increase in NIR absorption, allowing for an opportunity to magnetophoretically control and locally enhance a NIR light-induced thermal effect, which holds high promise for the application in photothermal therapy.

6.
Nanomaterials (Basel) ; 9(11)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671590

ABSTRACT

A nanosized drug complex was explored to improve the efficiency of cancer chemotherapy, complementing it with nanodelivery and photodynamic therapy. For this, nanomolar amounts of a non-covalent nanocomplex of Doxorubicin (Dox) with carbon nanoparticle C60 fullerene (C60) were applied in 1:1 and 2:1 molar ratio, exploiting C60 both as a drug-carrier and as a photosensitizer. The fluorescence microscopy analysis of human leukemic CCRF-CEM cells, in vitro cancer model, treated with nanocomplexes showed Dox's nuclear and C60's extranuclear localization. It gave an opportunity to realize a double hit strategy against cancer cells based on Dox's antiproliferative activity and C60's photoinduced pro-oxidant activity. When cells were treated with 2:1 C60-Dox and irradiated at 405 nm the high cytotoxicity of photo-irradiated C60-Dox enabled a nanomolar concentration of Dox and C60 to efficiently kill cancer cells in vitro. The high pro-oxidant and pro-apoptotic efficiency decreased IC50 16, 9 and 7 × 103-fold, if compared with the action of Dox, non-irradiated nanocomplex, and C60's photodynamic effect, correspondingly. Hereafter, a strong synergy of therapy arising from the combination of C60-mediated Dox delivery and C60 photoexcitation was revealed. Our data indicate that a combination of chemo- and photodynamic therapies with C60-Dox nanoformulation provides a promising synergetic approach for cancer treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...