Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Physiol ; 566(Pt 1): 173-88, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15860526

ABSTRACT

The blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1) stimulates cAMP production, promotes Ca2+ influx, and mobilizes an intracellular source of Ca2+ in pancreatic beta cells. Here we provide evidence that these actions of GLP-1 are functionally related: they reflect a process of Ca2+-induced Ca2+ release (CICR) that requires activation of protein kinase A (PKA) and the Epac family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs). In rat insulin-secreting INS-1 cells or mouse beta cells loaded with caged Ca2+ (NP-EGTA), a GLP-1 receptor agonist (exendin-4) is demonstrated to sensitize intracellular Ca2+ release channels to stimulatory effects of cytosolic Ca2+, thereby allowing CICR to be generated by the uncaging of Ca2+ (UV flash photolysis). This sensitizing action of exendin-4 is diminished by an inhibitor of PKA (H-89) or by overexpression of dominant negative Epac. It is reproduced by cell-permeant cAMP analogues that activate PKA (6-Bnz-cAMP) or Epac (8-pCPT-2'-O-Me-cAMP) selectively. Depletion of Ca2+ stores with thapsigargin abolishes CICR, while inhibitors of Ca2+ release channels (ryanodine and heparin) attenuate CICR in an additive manner. Because the uncaging of Ca2+ fails to stimulate CICR in the absence of cAMP-elevating agents, it is concluded that there exists in beta cells a process of second messenger coincidence detection, whereby intracellular Ca2+ release channels (ryanodine receptors, inositol 1,4,5-trisphosphate (IP3) receptors) monitor a simultaneous increase of cAMP and Ca2+ concentrations. We propose that second messenger coincidence detection of this type may explain how GLP-1 interacts with beta cell glucose metabolism to stimulate insulin secretion.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Glucagon/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Islets of Langerhans/physiology , Peptide Fragments/metabolism , Protein Precursors/metabolism , Animals , Calcium/pharmacology , Calcium Channels/metabolism , Cells, Cultured , Glucagon-Like Peptide 1 , Inositol 1,4,5-Trisphosphate Receptors , Male , Mice , Mice, Inbred C57BL , Receptors, Cytoplasmic and Nuclear/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...