Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 39(6Part9): 3707, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28519048

ABSTRACT

PURPOSE: To investigate the validity of using the residual range as a universal quantity to specify the quality of modulated proton beams. METHODS: We used TOPAS (Tool for Particle Simulation), an application of the Geant4 toolkit, to simulate absorbed dose and stopping-power distributions from a commercial passive scattering nozzle. We used the standard physics lists from Geant4 in the simulations. All particles were included, as well as physics models for nuclear interactions. No variance reduction techniques were used. Dose and averaged stopping-power as functions of depth were scored in a water box with 320 scoring volumes of 15 × 15 × 0.1 cm3 . Stopping-power spectra were scored in a15 × 15 × 0.1 cm3 volume located in the middle of SOBPs. All particles were considered in the dose scoring. Only protons (primary and secondary) were considered in the scoring of stopping-power. RESULTS: For the same residual range, differences in averaged stopping-power values of up to 13% were observed for a 200 MeV beam with modulations of 4 cm and 8 cm, respectively. Simulations of four modulated proton energies with the same SOBP of 8 cm showed differences of up to 13% in the averaged stopping-power values even in the SOBP region. We also simulated stopping power spectra in the middle of 8 cm SOBPs for four modulated proton energies. The averaged stopping-power values calculated from the spectra were within 3%, however, their distributions were very different with full width at half-maximum 150% larger for the 250 MeV beam compared to that of the 140 MeV beam. CONCLUSION: Large differences in the averaged stopping-power values and stopping-power spectra were observed for the same residual range. Determining whether these differences have a significant effect on the response of radiation detectors exposed to proton beams requires further investigation. Natural Sciences and Engineering Research Council of Canada and Ontario Graduate Scholarship Program, Ontario Ministry of Training, Colleges and Universities.

2.
Med Phys ; 39(6Part11): 3723, 2012 Jun.
Article in English | MEDLINE | ID: mdl-28517116

ABSTRACT

PURPOSE: To determine the accuracy of the GEANT4 Monte Carlo toolkit for ionization chamber calculations in radiotherapy photon beams. METHODS: First, we used the Fano cavity example included in the GEANT4 distribution to validate calculations under Fano conditions. We determined a combination of parameters and physics list that provided results consistent within +/- 0.5% with the Fano theorem. Next we performed simulations to investigate the accuracy of using GEANT4 for ionization chamber calculations. Eight ionization chambers were modeled using detailed manufacturer specifications including A1, A1SL, NE2571, PTW30010, PTW30012, PTW31010, PTW31014 and PTW31016. The absorbed dose to water for a cylindrical water cavity and the absorbed dose to air in the ionization chambers' cavities were scored for 1.25 MeV photons. The ratio of these quantities was then compared to values from EGSnrc simulations. RESULTS: Simulations using the Fano cavity example yielded results within +/- 0.5% with the Fano theorem across 1.25, 3 and 4 MeV incident photon energies. The most accurate and consistent results were obtained using the G4eIonisation ionization model and G4GoudsmitSaundersonMscModel multiple scattering (MS) model with a maximum step size limitation of 0.001 mm, which yielded results accurate to +/- 0.3% for all energies. This set of parameters and physics processes as well as the G4UrbanMscModel93 MS model were used for the ionization chamber calculations. The calculated quantities were compared to those used in Muir and Rogers 2010 (Med. Phys. 37: 5939-5950) and agreed to within sub-percentage differences for most chambers. CONCLUSIONS: The GEANT4 toolkit can achieve sub-percentage accuracy for ionization chamber calculations in radiotherapy photon beams. This is achieved by using either the G4GoudsmitSaundersonMscModel or G4UrbanMscModel93 MS models. Although less accurate (+/- 0.5%), simulations employing the G4UrbanMscModel93 MS model are on average two orders magnitude faster than that of the G4GoudsmitSaundersonMscModel MS model (+/- 0.3%). Natural Sciences and Engineering Research Council of Canada.

SELECTION OF CITATIONS
SEARCH DETAIL
...