Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 263: 115228, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37423198

ABSTRACT

The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.


Subject(s)
Environmental Pollutants , Oryza , Soil/chemistry , Agriculture , Charcoal , Carbon , Fertilizers
2.
Environ Geochem Health ; 44(6): 1795-1811, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34368909

ABSTRACT

Soil pollution by potentially toxic elements (PTEs) as one of the major environmental hazards is associated with metal exploration and refining acting. In this study, forty-five topsoil samples surrounding a copper smelter factory were taken and analysed using standard routine methods. The total concentration, chemical fractionation and the mobility potential of As, Cd, Cr, Cu, Pb and Zn were analysed. Additionally, the spatial distribution of PTEs, the potential ecotoxicological, and human health risks was assessed. The range of total Cu was 1478-4718 mg kg-1, reaching up to 501.5, 21.6, 118.4, 573.5 and 943.3 mg kg-1 for total contents of As, Cd, Cr, Pb and Zn, respectively. The potentially available fractions after sequential extraction reveal all studied PTE were dramatically mobile and available in the studied area (86%, 69.3%, 59.5%, 87.2%, 84% and 68% for As, Cd, Cr, Pb, Zn and Cu, respectively), reflecting that the concentration and accumulation of these elements are profoundly affected or originated by smelting activities and deposition of atmospheric emissions of the Cu smelting factory. The spatial distribution of all PTEs indicated that concentrations of these element near the smelter Cu-factory were elevated. Accordingly, the ecotoxicology status of the studied area suggests that significantly high risks are posed by the measured PTEs. Non-carcinogenic effects of As, Pb and Cu were significantly much higher than the recommended value (HI = 1), suggesting that these three PTEs could adversely impact children's health. For adults, only the HI value of As was greater than one.


Subject(s)
Metals, Heavy , Soil Pollutants , Adult , Cadmium/analysis , Child , China , Copper/analysis , Copper/toxicity , Environmental Monitoring/methods , Humans , Lead/analysis , Lead/toxicity , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...