Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 46(1): 15-24, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30414277

ABSTRACT

PURPOSE: Electromagnetic (EM) tracking is a key technology in image-guided therapy. A new EM Micro Sensor was presented by Polhemus Inc.; it is the first to enable localization of medical instruments through their trackers. Different field generators (FGs) are available by Polhemus, one being almost as small as a sugar cube. As accuracy and robustness of tracking are known challenges to using EM trackers in clinical environments, the goal of this study was a standardized assessment of the Micro Sensor in both a laboratory (lab) and a computed tomography (CT) environment. METHODS: The Micro Sensor was assessed by means of Hummel et al.'s standardized protocol; it was assessed in conjunction with a Polhemus Liberty tracker and three FGs - with edge lengths of 1 (TX1), 2 (TX2), and 4 (TX4) inches. Precision as well as positional and rotational accuracy were determined in a lab and a CT suite. Distortions by four different metallic cylinders and tracking of two typical medical instruments - a hypodermic needle and a flexible endoscope - were also tested. RESULTS: A jitter of 0.02 mm or less was found for all FGs in the different environments, except for the TX2 FG for which no valid data could be obtained in the CT. Errors of 5 cm distance measurements were 0.6 mm or less for all FGs in the lab. While the distance errors of the TX1 FG were only slightly increased up to 1.6 mm in the CT, those of the TX4 FG were found to be up to around 10% of the measured distance (5.4 mm on average). The mean orientation error was found to be 0.9° /0.5° /0.1° for the TX4/TX2/TX1 FG in the lab. In the CT environment, rotation errors were in the same range: less than 1.2° /0.1° for the TX4/TX1 FG. Deviation under the presence of metallic cylinders stayed below 1 mm in most cases. Precision and orientational accuracy do not seem to be affected by instrument tracking and stayed in the same range as for the other measurements whereas distance errors were slightly increased up to 1.7 mm. CONCLUSION: This study shows that accurate tracking of medical instruments is possible with the new Micro Sensor; it demonstrated a jitter of 0.01 mm or less, position errors below 2 mm, and rotation errors of less than 0.3° . As with other EM trackers, errors increase when large tracking volumes with ranges of up to 50 cm are required in clinical environments. For smaller tracking volumes with ranges of up to 15 cm, a high accuracy and robustness was found. This is interesting especially for the TX1 FG which can easily be placed in close vicinity to the region of interest.


Subject(s)
Electromagnetic Fields , Microtechnology/instrumentation , Tomography, X-Ray Computed , Laboratories , Phantoms, Imaging
2.
Int J Comput Assist Radiol Surg ; 12(6): 931-940, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28332158

ABSTRACT

PURPOSE: Percutaneous radiofrequency ablation (RFA) of thyroid nodules is an alternative to surgical resection that offers the benefits of minimal scars for the patient, lower complication rates, and shorter treatment times. Ultrasound (US) is the preferred modality for guiding these procedures. The needle is usually kept within the US scanning plane to ensure needle visibility. However, this restricts flexibility in both transducer and needle movement and renders the procedure difficult, especially for inexperienced users. Existing navigation solutions often involve electromagnetic (EM) tracking, which requires placement of an external field generator (FG) in close proximity of the intervention site in order to avoid distortion of the EM field. This complicates the clinical workflow as placing the FG while ensuring that it neither restricts the physician's workspace nor affects tracking accuracy is awkward and time-consuming. METHODS: The EchoTrack concept overcomes these issues by combining the US probe and the EM FG in one modality, simultaneously providing both real-time US and tracking data without requiring the placement of an external FG for tracking. We propose a system and workflow to use EchoTrack for RFA of thyroid nodules. RESULTS: According to our results, the overall error of the EchoTrack system resulting from errors related to tracking and calibration is below 2 mm. Navigated thyroid RFA with the proposed concept is clinically feasible. Motion of internal critical structures relative to external markers can be up to several millimeters in extreme cases. CONCLUSIONS: The EchoTrack concept with its simple setup, flexibility, improved needle visualization, and additional guidance information has high potential to be clinically used for thyroid RFA.


Subject(s)
Catheter Ablation/methods , Surgery, Computer-Assisted/methods , Thyroid Gland/surgery , Thyroid Nodule/surgery , Ultrasonography/methods , Humans , Motion
3.
Int J Comput Assist Radiol Surg ; 12(3): 351-361, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27687984

ABSTRACT

PURPOSE: Due to rapid developments in the research areas of medical imaging, medical image processing and robotics, computer-assisted interventions (CAI) are becoming an integral part of modern patient care. From a software engineering point of view, these systems are highly complex and research can benefit greatly from reusing software components. This is supported by a number of open-source toolkits for medical imaging and CAI such as the medical imaging interaction toolkit (MITK), the public software library for ultrasound imaging research (PLUS) and 3D Slicer. An independent inter-toolkit communication such as the open image-guided therapy link (OpenIGTLink) can be used to combine the advantages of these toolkits and enable an easier realization of a clinical CAI workflow. METHODS: MITK-OpenIGTLink is presented as a network interface within MITK that allows easy to use, asynchronous two-way messaging between MITK and clinical devices or other toolkits. Performance and interoperability tests with MITK-OpenIGTLink were carried out considering the whole CAI workflow from data acquisition over processing to visualization. RESULTS: We present how MITK-OpenIGTLink can be applied in different usage scenarios. In performance tests, tracking data were transmitted with a frame rate of up to 1000 Hz and a latency of 2.81 ms. Transmission of images with typical ultrasound (US) and greyscale high-definition (HD) resolutions of [Formula: see text] and [Formula: see text] is possible at up to 512 and 128 Hz, respectively. CONCLUSION: With the integration of OpenIGTLink into MITK, this protocol is now supported by all established open-source toolkits in the field. This eases interoperability between MITK and toolkits such as PLUS or 3D Slicer and facilitates cross-toolkit research collaborations. MITK and its submodule MITK-OpenIGTLink are provided open source under a BSD-style licence ( http://mitk.org ).


Subject(s)
Image Processing, Computer-Assisted/methods , Software , Surgery, Computer-Assisted/methods , Telecommunications , Ultrasonography , Humans , Robotic Surgical Procedures , Robotics , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...