Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 191(2): 1404-1415, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36449559

ABSTRACT

The plant hormone abscisic acid (ABA) plays a central role in the regulation of seed maturation and dormancy. ABA also restrains germination under abiotic-stress conditions. Here, we show in tomato (Solanum lycopersicum) that the ABA importer ABA-IMPORTING TRANSPORTER 1.1 (AIT1.1/NPF4.6) has a role in radicle emergence under salinity conditions. AIT1.1 expression was upregulated following seed imbibition, and CRISPR/Cas9-derived ait1.1 mutants exhibited faster radicle emergence, increased germination and partial resistance to ABA. AIT1.1 was highly expressed in the endosperm, but not in the embryo, and ait1.1 isolated embryos did not show resistance to ABA. On the other hand, loss of AIT1.1 activity promoted the expression of endosperm-weakening-related genes, and seed-coat scarification eliminated the promoting effect of ait1.1 on radicle emergence. Therefore, we propose that imbibition-induced AIT1.1 expression in the micropylar endosperm mediates ABA-uptake into micropylar cells to restrain endosperm weakening. While salinity conditions strongly inhibited wild-type M82 seed germination, high salinity had a much weaker effect on ait1.1 germination. We suggest that AIT1.1 evolved to inhibit germination under unfavorable conditions, such as salinity. Unlike other ABA mutants, ait1.1 exhibited normal seed longevity, and therefore, the ait1.1 allele may be exploited to improve seed germination in crops.


Subject(s)
Abscisic Acid , Solanum lycopersicum , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Solanum lycopersicum/genetics , Germination/genetics , Seeds/genetics , Seeds/metabolism , Salinity , Membrane Transport Proteins/metabolism , Gene Expression Regulation, Plant
2.
New Phytol ; 232(5): 1985-1998, 2021 12.
Article in English | MEDLINE | ID: mdl-34541677

ABSTRACT

Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these 'drought avoidance' responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants' smaller canopy areas. The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.


Subject(s)
Solanum lycopersicum , Abscisic Acid , Droughts , Gibberellins , Solanum lycopersicum/genetics , Plant Stomata , Water
3.
Chem Commun (Camb) ; 56(75): 11022-11025, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32959824

ABSTRACT

In the current study, we evaluated the antimicrobial activity of randomly-sequenced peptide mixtures (RPMs) bearing hydrophobic and cationic residues that were immobilized on beads. We showed that these beads exhibit high and broad bactericidal activity against various pathogenic bacteria while possessing minimal hemolytic activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...