Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110952

ABSTRACT

A possible solution for the realization of high-efficiency visible light-emitting diodes (LEDs) exploits InGaN-quantum-dot-based active regions. However, the role of local composition fluctuations inside the quantum dots and their effect of the device characteristics have not yet been examined in sufficient detail. Here, we present numerical simulations of a quantum-dot structure restored from an experimental high-resolution transmission electron microscopy image. A single InGaN island with the size of ten nanometers and nonuniform indium content distribution is analyzed. A number of two- and three-dimensional models of the quantum dot are derived from the experimental image by a special numerical algorithm, which enables electromechanical, continuum k→·p→, and empirical tight-binding calculations, including emission spectra prediction. Effectiveness of continuous and atomistic approaches are compared, and the impact of InGaN composition fluctuations on the ground-state electron and hole wave functions and quantum dot emission spectrum is analyzed in detail. Finally, comparison of the predicted spectrum with the experimental one is performed to assess the applicability of various simulation approaches.

2.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677994

ABSTRACT

We exploit the three-dimensional (3D) character of the strain field created around InGaN islands formed within the multilayer structures spaced by a less than 1-nm-thick GaN layer for the creation of spatially correlated electronically coupled quantum dots (QDs). The laterally inhomogeneous vertical out-diffusion of In atoms during growth interruption is the basic mechanism for the formation of InGaN islands within as-deposited 2D layers. An anisotropic 3D strain field created in the first layer is sufficient to justify the vertical correlation of the islands formed in the upper layers spaced by a sufficiently thin GaN layer. When the thickness of a GaN spacer exceeds 1 nm, QDs from different layers under the same growth conditions emit independently and in the same wavelength range. When extremely thin (less than 1 nm), a GaN spacer is formed solely by applying short GI, and a double wavelength emission in the blue and green spectral ranges evidences the electromechanical coupling. With k→·p→ calculations including electromechanical fields, we model the optoelectronic properties of a structure with three InGaN lens-shaped QDs embedded in a GaN matrix, with three different configurations of In content. The profiles of the band structures are strongly dependent on the In content arrangement, and the quantum-confined Stark effect is significantly reduced in a structure with an increasing gradient of In content from the top to the bottom QD. This configuration exhibits carrier tunneling through the QDs, an increase of wave functions overlap, and evidence emerges of three distinct peaks in the spectral range.

3.
Nanomaterials (Basel) ; 12(12)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745307

ABSTRACT

We develop a model of an epitaxial self-organized InGaAs quantum dot buried in GaAs, which takes into account experimentally determined indium distribution inside the QD, its geometry and crystallography. The problem of solid mechanics was solved to determine the stress-strain field. Then, the parameters of the electron and hole ground states were evaluated by solving the problem of the quantum mechanics on the same mesh. The results of calculations appeared to be reasonably well consistent with experimentally recorded optical emission spectra for the QDs in the same sample. The experimentally-verified modeling reveals a bagel-like shape of the hole wave function at the ground state, which should considerably impact the optical and magnetic properties of the QDs. Such shape of the wave function is beyond the predictions of simplified models with uniform indium distribution.

4.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209198

ABSTRACT

Among the phase change materials, Ge2Sb2Te5 (GST-225) is the most studied and is already integrated into many devices. N doping is known to significantly improve some key characteristics such as the thermal stability of materials and the resistance drift of devices. However, the origin, at the atomic scale, of these alterations is rather elusive. The most important issue is to understand how N doping affects the crystallization characteristics, mechanisms and kinetics, of GST-225. Here, we report the results of a combination of in situ and ex situ transmission electron microscopy (TEM) investigations carried out on specifically designed samples to evidence the influence of N concentration on the crystallization kinetics and resulting morphology of the alloy. Beyond the known shift of the crystallization temperature and the observation of smaller grains, we show that N renders the crystallization process more "nucleation dominated" and ascribe this characteristic to the increased viscosity of the amorphous state. This increased viscosity is linked to the mechanical rigidity and the reduced diffusivity resulting from the formation of Ge-N bonds in the amorphous phase. During thermal annealing, N hampers the coalescence of the crystalline grains and the cubic to hexagonal transition. Making use of AbStrain, a recently invented TEM-based technique, we evidence that the nanocrystals formed from the crystallization of N-doped amorphous GST-225 are under tension, which suggests that N is inserted in the lattice and explains why it is not found at grain boundaries. Globally, all these results demonstrate that the origin of the effect of N on the crystallization of GST-225 is not attributed to the formation of a secondary phase such as a nitride, but to the ability of N to bind to Ge in the amorphous and crystalline phases and to unbind and rebind with Ge along the diffusion path of this atomic species during annealing.

5.
Sci Rep ; 7(1): 12394, 2017 09 29.
Article in English | MEDLINE | ID: mdl-28963544

ABSTRACT

A bewildering number of techniques have been developed for transmission electron microscopy (TEM), involving the use of ever more complex combinations of lens configurations, apertures and detector geometries. In parallel, the developments in the field of ion beam instruments have modernized sample preparation and enabled the preparation of various types of materials. However, the desired final specimen geometry is always almost the same: a thin foil of uniform thickness. Here we will show that judicious design of specimen geometry can make all the difference and that experiments can be carried out on the most basic electron microscope and in the usual imaging modes. We propose two sample preparation methods that allow the formation of controlled moiré patterns for general monocrystalline structures in cross-section and at specific sites. We developed moiré image treatment algorithms using an absolute correction of projection lens distortions of a TEM that allows strain measurements and mapping with a nanometer resolution and 10-4 precision. Imaging and diffraction techniques in other fields may in turn benefit from this technique in perspective.

6.
Nanotechnology ; 28(27): 275201, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28612754

ABSTRACT

We present a study of blue III-nitride light-emitting diodes (LEDs) with multiple quantum well (MQW) and quantum dot (QD) active regions (ARs), comparing experimental and theoretical results. The LED samples were grown by metalorganic vapor phase epitaxy, utilizing growth interruption in the hydrogen/nitrogen atmosphere and variable reactor pressure to control the AR microstructure. Realistic configuration of the QD AR implied in simulations was directly extracted from HRTEM characterization of the grown QD-based structures. Multi-scale 2D simulations of the carrier transport inside the multiple QD AR have revealed a non-trivial pathway for carrier injection into the dots. Electrons and holes are found to penetrate deep into the multi-layer AR through the gaps between individual QDs and get into the dots via their side edges rather than via top and bottom interfaces. This enables a more homogeneous carrier distribution among the dots situated in different layers than among the laterally uniform quantum well (QWs) in the MQW AR. As a result, a lower turn-on voltage is predicted for QD-based LEDs, as compared to MQW ones. Simulations did not show any remarkable difference in the efficiencies of the MQW and QD-based LEDs, if the same recombination coefficients are utilized, i.e. a similar crystal quality of both types of LED structures is assumed. Measurements of the current-voltage characteristics of LEDs with both kinds of the AR have shown their close similarity, in contrast to theoretical predictions. This implies the conventional assumption of laterally uniform QWs not to be likely an adequate approximation for the carrier transport in MQW LED structures. Optical characterization of MQW and QD-based LEDs has demonstrated that the later ones exhibit a higher efficiency, which could be attributed to better crystal quality of the grown QD-based structures. The difference in the crystal quality explains the recently observed correlation between the growth pressure of LED structures and their efficiency and should be taken into account while further comparing performances of MQW and QD-based LEDs. In contrast to experimental results, our simulations did not reveal any advantages of using QD-based ARs over the MQW ones, if the same recombination constants are assumed for both cases. This fact demonstrates importance of accounting for growth-dependent factors, like crystal quality, which may limit the device performance. Nevertheless, a more uniform carrier injection into multi-layer QD ARs predicted by modeling may serve as the basis for further improvement of LED efficiency by lowering carrier density in individual QDs and, hence, suppressing the Auger recombination losses.

7.
Nanotechnology ; 28(1): 015701, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-27897139

ABSTRACT

The impact of electromechanical coupling on optical properties of light-emitting diodes (LEDs) with InGaN/GaN quantum-dot (QD) active regions is studied by numerical simulations. The structure, i.e. the shape and the average In content of the QDs, has been directly derived from experimental data on out-of-plane strain distribution obtained from the geometric-phase analysis of a high-resolution transmission electron microscopy image of an LED structure grown by metalorganic vapor-phase epitaxy. Using continuum [Formula: see text] calculations, we have studied first the lateral and full electromechanical coupling between the QDs in the active region and its impact on the emission spectrum of a single QD located in the center of the region. Our simulations demonstrate the spectrum to be weakly affected by the coupling despite the strong common strain field induced in the QD active region. Then we analyzed the effect of vertical coupling between vertically stacked QDs as a function of the interdot distance. We have found that QCSE gives rise to a blue-shift of the overall emission spectrum when the interdot distance becomes small enough. Finally, we compared the theoretical spectrum obtained from simulation of the entire active region with an experimental electroluminescence (EL) spectrum. While the theoretical peak emission wavelength of the selected central QD corresponded well to that of the EL spectrum, the width of the latter one was determined by the scatter in the structures of various QDs located in the active region. Good agreement between the simulations and experiment achieved as a whole validates our model based on realistic structure of the QD active region and demonstrates advantages of the applied approach.

9.
Sci Rep ; 6: 25328, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27142097

ABSTRACT

Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

10.
Nano Lett ; 14(4): 1769-75, 2014.
Article in English | MEDLINE | ID: mdl-24588318

ABSTRACT

Damage evolution and dopant distribution during nanosecond laser thermal annealing of ion implanted silicon have been investigated by means of transmission electron microscopy, secondary ion mass spectrometry, and atom probe tomography. Different melting front positions were realized and studied: nonmelt, partial melt, and full melt with respect to the as-implanted dopant profile. In both boron and silicon implanted silicon samples, the most stable form among the observed defects is that of dislocation loops lying close to (001) and with Burgers vector parallel to the [001] direction, instead of conventional {111} dislocation loops or {311} rod-like defects, which are known to be more energetically favorable and are typically observed in ion implanted silicon. The observed results are explained in terms of a possible modification of the defect formation energy induced by the compressive stress developed in the nonmelted regions during laser annealing.

11.
Ultramicroscopy ; 136: 42-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24012934

ABSTRACT

Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation.

SELECTION OF CITATIONS
SEARCH DETAIL
...