Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37376312

ABSTRACT

Insulation failure of composite epoxy insulation materials in distribution switchgear under the stress of heat and humidity is one of the leading causes of damage to switchgear components. This work prepared composite epoxy insulation materials by casting and curing a diglycidyl ether of bisphenol A (DGEBA)/anhydride/wollastonite composite system, and performed material accelerated aging experiments under three conditions: 75 °C and 95% relative humidity (RH), 85 °C and 95% RH, and 95 °C and 95% RH. Material, mechanical, thermal, chemical, and microstructural properties were investigated. Based on the IEC 60216-2 standard and our data, tensile strength and ester carbonyl bond (C=O) absorption in infrared spectra were chosen as failure criteria. At the failure points, the ester C=O absorption decreased to ~28% and the tensile strength decreased to 50%. Accordingly, a lifetime prediction model was established to estimate material lifetime at 25 °C and 95% RH to be 33.16 years. The material degradation mechanism was attributed to the hydrolysis of epoxy resin ester bonds into organic acids and alcohols under heat and humidity stresses. Organic acids reacted with calcium ions (Ca2+) of fillers to form carboxylate, which destroyed the resin-filler interface, resulting in a hydrophilic surface and a decrease in mechanical strength.

2.
Polymers (Basel) ; 15(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37112088

ABSTRACT

In this study, we conducted the hygrothermal aging of an epoxy composite insulation material at 95% relative humidity (RH) and temperatures of 95 °C, 85 °C, and 75 °C. We measured electrical properties, including volume resistivity, electrical permittivity, dielectric loss, and breakdown strength. It was found to be impossible to estimate a lifetime based on the IEC 60216 standard, because it uses breakdown strength as its criterion even though breakdown strength hardly changes in response to hygrothermal aging. In analyzing variations in dielectric loss with aging time, we found that significant increases in dielectric loss correlated well with lifetime prediction based on the mechanical strength of the material, as described in the IEC 60216 standard. Accordingly, we propose an alternative lifetime prediction criterion by which a material is deemed to reach its end of life when its dielectric loss reaches 3 and 6-8 times the unaged value at 50 Hz and low frequencies, respectively.

3.
Polymers (Basel) ; 15(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36772066

ABSTRACT

To reveal the microscopic mechanism of synergetic thermal-electrical degradation during a partial discharge process in epoxy insulation materials, the decomposition of crosslinked epoxy resin is investigated using reactive molecular dynamics simulations under high electric field and thermal degradation conditions. Bond-boost acceleration method is employed in reactive molecular dynamics simulations to successfully establish epoxy polymer models with a crosslink degree of 93%. Active molecular species derived from electrical partial discharges are considered in the current work. Small molecule products and decomposition temperature in the degradation process under an electric field are calculated to elucidate the effect of nitric acid and ozone molecules, being the active products generated by electrical partial discharges, on the synergetic thermal-electrical degradation of epoxy resin. Both nitric acid and ozone exacerbate thermal impact decomposition of crosslinked epoxy polymer by decreasing initial decomposition temperature from 1050 K to 940 K and 820 K, respectively. It is found that these active products can oxidize hydroxyl groups and carbon-nitrogen bridge bonds in epoxy molecular chains, leading to the aggravation of epoxy resin decomposition, as manifested by the significant increase in the decomposed molecular products. In contrast, thermal degradation of the epoxy resin without the active species is not expedited by increasing electric field. These strongly oxidative molecules are easily reduced to negative ions and able to obtain kinetic energies from electric field, which result in chemical corrosion and local temperature increase to accelerate decomposition of epoxy insulation materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...