Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 120(43): 8574-8583, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27704836

ABSTRACT

We present high-resolution near-edge X-ray absorption fine structure (NEXAFS) measurements at the P L2/3 edges, F K edge, C K edge, and Se M2/3 edges of the quasi-one-dimensional (1D) conductor and superconductor (TMTSF)2PF6. NEXAFS allows probing the donor and acceptor moieties separately; spectra were recorded between room temperature (RT) and 30 K at normal incidence. Spectra taken around RT were also studied as a function of the angle (θ) between the electric field of the X-ray beam and the 1D conducting direction. In contrast with a previous study of the S L2/3-edges spectra in (TMTTF)2AsF6, the Se M2/3 edges of (TMTSF)2PF6 do not exhibit a well-resolved spectrum. Surprisingly, the C K-edge spectra contain three well-defined peaks exhibiting strong and nontrivial θ and temperature dependence. The nature of these peaks as well as those of the F K-edge spectra could be rationalized on the basis of first-principles DFT calculations. Despite the structural similarity, the NEXAFS spectra of (TMTSF)2PF6 and (TMTTF)2AsF6 exhibit important differences. In contrast with the case of (TMTTF)2AsF6, the F K-edge spectra of (TMTSF)2PF6 do not change with temperature despite stronger donor-anion interactions. All these features reveal subtle differences in the electronic structure of the TMTSF and TMTTF families of salts.

2.
J Chem Phys ; 145(3): 034702, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27448899

ABSTRACT

We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.

3.
Phys Chem Chem Phys ; 17(29): 19202-14, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26135020

ABSTRACT

High-resolution near-edge X-ray absorption fine structure (NEXAFS) measurements at the As M-edge, F K-edge and S L-edge of the Fabre salt (TMTTF)2AsF6 were performed from room temperature (RT) to 90 K, allowing to reach the charge localization regime below Tρ ≈ 230 K and to cross the charge ordering (CO) transition at TCO ≈ 102 K. The F K-edge and S L-edge spectra exhibit several transitions which have been indexed on the basis of first-principles DFT calculations. Upon cooling from RT significant energy shifts up to +0.8 eV and -0.4 eV were observed in transitions exhibited by the F 1s and S 2p spectra respectively, while the As 3p doublet does not show a significant shift. Opposite energy shifts found in the F 1s and S 2p spectra reflect substantial thermal changes in the electronic environment of F atoms of the anion and S atoms of TMTTF. The changes found around the charge localization crossover suggest an increase of the participation of the S d orbitals in the empty states of TMTTF as well as an increase of the strength of donoranion interactions. A new F 1s pre-edge signal detected upon entry into the CO phase is a clear fingerprint of the symmetry breaking occurring at TCO. We propose that this new transition is caused by a substantial mixing between the HOMO of the AsF6(-) anion and the unoccupied part of the TMTTF HOMO conduction band. Analysis of the whole spectra also suggests that the loss of the inversion symmetry associated with the CO is due to an anion displacement increasing the strength of SF interactions. Our data show unambiguously that anions are not, as previously assumed, innocent spectators during the electronic modifications experienced by the Fabre salts upon cooling. In particular the interpretation of the spectra pointing out a thermally dependent mixing of anion wave functions with those of the TMTTF chains demonstrates for the first time the importance of anion-donor interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...