Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(12)2022 11 23.
Article in English | MEDLINE | ID: mdl-36560618

ABSTRACT

Increasing evidence suggests that gut dysbiosis is associated with coronavirus disease 2019 (COVID-19) infection and may persist long after disease resolution. The excessive use of antimicrobials in patients with COVID-19 can lead to additional destruction of the microbiota, as well as to the growth and spread of antimicrobial resistance. The problem of bacterial resistance to antibiotics encourages the search for alternative methods of limiting bacterial growth and restoring the normal balance of the microbiota in the human body. Bacteriophages are promising candidates as potential regulators of the microbiota. In the present study, two complex phage cocktails targeting multiple bacterial species were used in the rehabilitation of thirty patients after COVID-19, and the effectiveness of the bacteriophages against the clinical strain of Klebsiella pneumoniae was evaluated for the first time using real-time visualization on a 3D Cell Explorer microscope. Application of phage cocktails for two weeks showed safety and the absence of adverse effects. An almost threefold statistically significant decrease in the anaerobic imbalance ratio, together with an erythrocyte sedimentation rate (ESR), was detected. This work will serve as a starting point for a broader and more detailed study of the use of phages and their effects on the microbiome.


Subject(s)
Bacterial Infections , Bacteriophages , COVID-19 , Microbiota , Humans , COVID-19/therapy , Bacteria
2.
J Pers Med ; 12(3)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35330399

ABSTRACT

The search for new potential biomarkers for the diagnostics of post-neurosurgical bacterial meningitis is required because of the difficulties in its early verification using results of the routine laboratory and biochemical analyses of the cerebrospinal fluid (CSF). The goal of the study was to determine the contents of the aromatic metabolites and biomarkers in the CSF samples of the post-neurosurgical patients (n = 82) and their potential diagnostical significance for the evaluation of the risk of post-neurosurgical meningitis. Patients with signs of post-neurosurgical meningitis (n = 30) had lower median values of glucose and higher values of cell count, neutrophils, lactate, protein, 3-(4-hydroxyphenyl)lactic acid (p-HPhLA), and interleukin-6 (IL-6) than patients without signs of post-neurosurgical meningitis (n = 52). ROC analysis for IL-6 and p-HPhLA resulted in 0.785 and 0.734 values of the area under the ROC curve, with sensitivity 96.30 and 66.67%; specificity 54.17 and 82.69%, respectively. IL-6 should be considered as a non-specific biomarker, in contrast to the microbial metabolite p-HPhLA. If the concentration of p-HPhLA was more or equal to 0.9 µmol/L, the risk of bacterial complications was 9.6 times higher. p-HPhLA is a promising marker for the prognosis of post-neurosurgical meningitis, and its determination on a larger group of post-neurosurgical patients can subsequently prove its diagnostic significance for the verification of CNS infections.

3.
Curr Pharm Des ; 27(2): 238-249, 2021.
Article in English | MEDLINE | ID: mdl-33092503

ABSTRACT

Interest in indolic structure metabolites, including a number of products of microbial biotransformation of the aromatic amino acid tryptophan, is increasingly growing. The review prepared by a team of authors is based on in-depthscrutiny of data available in PubMed, Scopus, Cyberleninka, Clinical Trials, and Cochrane Library, eventually narrowing the search to a set of keywords such as tryptophan metabolites; plasma metabolomics profiling; metabolomics fingerprinting; gas-, liquid chromatography mass spectrometry; serotonin; melatonin; tryptamine; indoxyl sulfate; indole-3-acetic acid; indole-3-propionic acid; 5-hydroxyindole-3-acetic acid; gut microbiota and microbial metabolites. It provides a summary that outlines the pattern of changes in the level of indolic structure metabolites in a number of diseases and deals with the data from the field of human microbiota metabolites. In modern experimental studies, including the use of gnotobiological (germ-free) animals, it has been convincingly proved that the formation of tryptophan metabolites such as indole-3-acetic acid, indole-3-propionic acid, tryptamine, and indoxyl sulfate is associated with gut bacteria. Attention to some concentration changes of indolic compounds is due to the fact that pronounced deviations and a significant decrease of these metabolites in the blood were found in a number of serious cardiovascular, brain or gastrointestinal diseases. The literature-based analysis allowed the authors to conclude that a constant (normal) level of the main metabolites of the indolic structure in the human body is maintained by a few strict anaerobic bacteria from the gut of a healthy body belonging to the species of Clostridium, Bacteroides, Peptostreptococcus, Eubacteria, etc. The authors focus on several metabolites of the indolic structure that can be called clinically significant in certain diseases, such as schizophrenia, depression, atherosclerosis, colorectal cancer, etc. Determining the level of indole metabolites in the blood can be used to diagnose and monitor the effectiveness of a comprehensive treatment approach.


Subject(s)
Gastrointestinal Microbiome , Noncommunicable Diseases , Animals , Biomarkers , Humans , Indoles , Tryptophan
4.
Shock ; 50(3): 273-279, 2018 09.
Article in English | MEDLINE | ID: mdl-29189605

ABSTRACT

INTRODUCTION: We hypothesized that aromatic microbial metabolites (AMM), such as phenyllactic (PhLA), p-hydroxyphenylacetic (p-HPhAA), and p-hydroxyphenyllactic (p-HPhLA) acids, contribute to the pathogenesis of septic shock. METHODS: Clinical and laboratory data of patients with community-acquired pneumonia were obtained on intensive care unit admission and the next day. Patients were divided into two groups based on septic shock presence or absence. The levels of AMM (PhLA, p-HPhAA, p-HPhLA, and their sum, ∑3AMM), catecholamine metabolites (3,4-dihydroxymandelic [DHMA], 3,4-dihydroxyphenylacetic [DOPAC], and homovanillic [HVA] acids), lactate, N-terminal pro-brain natriuretic peptide (NT-proBNP), inducible nitric oxide synthase (iNOS), and procalcitonin (PCT) were compared. Correlations between AMM and clinical and laboratory data were calculated. RESULTS: There were 20 patients in the septic shock group and 21 in the nonseptic shock group. On admission, the septic shock patients demonstrated significantly higher levels of PhLA (2.3 vs. 0.8 µmol/L), p-HPhAA (4.6 vs. 1.4 µmol/L), p-HPhLA (7.4 vs. 2.6 µmol/L), HVA, lactate, and significantly lower levels of iNOS. The next day, the two groups also showed significant differences in the levels of PCT and NT-proBNP. The correlation between ∑3AMM and presence of shock, levels of lactate, HVA, and NT-proBNP on admission was 0.44, 0.67, 0.57, and 0.38, respectively, and the correlation on the next day was 0.59, 0.73, 0.76, and 0.6, respectively (P < 0.01). These findings can be explained by the ability of AMM to reduce tyrosine hydroxylase activity, thus limiting the synthesis of catecholamines. CONCLUSIONS: AMM are involved in the pathogenesis of septic shock.


Subject(s)
Pneumonia , Shock, Septic , 3,4-Dihydroxyphenylacetic Acid/blood , Acetates/blood , Aged , Female , Homovanillic Acid/blood , Humans , Lactates/blood , Male , Mandelic Acids/blood , Middle Aged , Natriuretic Peptide, Brain/blood , Nitric Oxide Synthase Type II/blood , Peptide Fragments/blood , Pneumonia/blood , Pneumonia/complications , Shock, Septic/blood , Shock, Septic/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...