Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chembiochem ; 24(10): e202300183, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37042436

ABSTRACT

Marine bacteria, which are often described as chemical gold, are considered an exceptional source of new therapeutics. Considerable research interest has been given to lipopolysaccharides (LPSs), the main components of the Gram-negative outer membrane. LPS and its lipid A portion from marine bacteria are known to exhibit a tricky chemistry that has been often associated with intriguing properties such as behaving as immune adjuvants or anti-sepsis molecules. In this scenario, we report the structural determination of the lipid A from three marine bacteria within the Cellulophaga genus, which showed to produce an extremely heterogenous blend of tetra- to hexa-acylated lipid A species, mostly carrying one phosphate and one D-mannose on the glucosamine disaccharide backbone. The ability of the three LPSs in activating TLR4 signaling revealed a weaker immunopotential by C. baltica NNO 15840T and C. tyrosinoxydans EM41T , while C. algicola ACAM 630T behaved as a more potent TLR4 activator.


Subject(s)
Flavobacteriaceae , Gammaproteobacteria , Lipid A/chemistry , Toll-Like Receptor 4 , Lipopolysaccharides/chemistry
2.
Mar Drugs ; 21(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36827096

ABSTRACT

C-type lectins (CTLs) are a family of carbohydrate-binding proteins that mediate multiple biological events, including adhesion between cells, the turnover of serum glycoproteins, and innate immune system reactions to prospective invaders. Here, we describe the cDNA cloning of lectin from the bivalve Glycymeris yessoensis (GYL), which encodes 161 amino acids and the C-type carbohydrate recognition domain (CRD) with EPN and WND motifs. The deduced amino acid sequence showed similarity to other CTLs. GYL is a glycoprotein containing two N-glycosylation sites per subunit. N-glycans are made up of xylose, mannose, D-glucosamine, 3-O-methylated galactose, D-quinovoses, and 3-O-methylated 6-deoxy-D-glucose. The potential CRD tertiary structure of the GYL adopted CTL-typical long-form double-loop structure and included three disulfide bridges at the bases of the loops. Additionally, when confirming the GYL sequence, eight isoforms of this lectin were identified. This fact indicates the presence of a multigene family of GYL-like C-type lectins in the bivalve G. yessoensis. Using the glycan microarray approach, natural carbohydrate ligands were established, and the glycotope for GYL was reconstructed as "Galß1-4GlcNAcß obligatory containing an additional fragment", like a sulfate group or a methyl group of fucose or N-acetylgalactosamine residues.


Subject(s)
Bivalvia , Lectins, C-Type , Animals , Prospective Studies , Lectins, C-Type/metabolism , Carbohydrates , Bivalvia/chemistry , Polysaccharides/chemistry , Cloning, Molecular
3.
Mar Drugs ; 22(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38248652

ABSTRACT

In this study, a new l-rhamnose-binding lectin (GYL-R) from the hemolymph of bivalve Glycymeris yessoensis was purified using affinity and ion-exchange chromatography and functionally characterized. Lectin antimicrobial activity was examined in different ways. The lectin was inhibited by saccharides possessing the same configuration of hydroxyl groups at C-2 and C-4, such as l-rhamnose, d-galactose, lactose, l-arabinose and raffinose. Using the glycan microarray approach, natural carbohydrate ligands were established for GYL-R as l-Rha and glycans containing the α-Gal residue in the terminal position. The GYL-R molecular mass determined by MALDI-TOF mass spectrometry was 30,415 Da. The hemagglutination activity of the lectin was not affected by metal ions. The lectin was stable up to 75 °C and between pH 4.0 and 12.0. The amino acid sequence of the five GYL-R segments was obtained with nano-ESI MS/MS and contained both YGR and DPC-peptide motifs which are conserved in most of the l-rhamnose-binding lectin carbohydrate recognition domains. Circular dichroism confirmed that GYL is a α/ß-protein with a predominance of the random coil. Furthermore, GYL-R was able to bind and suppress the growth of the Gram-negative bacteria E. coli by recognizing lipopolysaccharides. Together, these results suggest that GYL-R is a new member of the RBL family which participates in the self-defense mechanism against bacteria and pathogens with a distinct carbohydrate-binding specificity.


Subject(s)
Bivalvia , Lectins , Animals , Lectins/pharmacology , Rhamnose , Escherichia coli , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology
4.
Front Nutr ; 9: 871325, 2022.
Article in English | MEDLINE | ID: mdl-35967819

ABSTRACT

The intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome controls caspase-1 activity and the maturation and release of the cytokines interleukin (IL)-1ß and IL-18. The NLRP3 inflammasome has attracted the attention of the pharmaceutical industry because it promotes the pathogenesis of many diseases, making it a promising target for drug development. Litsea cubeba (Lour.) is a plant traditionally used as a seasoning in Taiwan and in other Asian countries. In this study, we investigated the inhibitory activity of the leaves of L. cubeba against the NLRP3 inflammasome. We found that the ethanol extract of L. cubeba leaves (MLE) inhibited the NLRP3 inflammasome in macrophages by reducing caspase-1 activation and IL-1ß secretion. MLE reduced pyroptosis in macrophages and inhibited the release of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). In a mechanistic study, MLE reduced mitochondrial reactive oxygen species (ROS) production and preserved mitochondrial integrity, which led to reduced mitochondrial DNA release into the cytosol. MLE did not reduce the expression levels of NLRP3, IL-1ß precursor or TNF-α in lipopolysaccharide (LPS)-activated macrophages. These results indicated that MLE inhibited the NLRP3 inflammasome by suppressing the activation signals of the NLRP3 inflammasome but not by reducing the priming signal induced by LPS. In addition, oral administration of MLE (20-80 mg/kg) ameliorated dextran sulfate sodium (DSS)-induced colitis in a mouse model. Notably, mice that received MLE (1 and 2 g/kg) daily for 7 days did not exhibit visible side effects. Gas chromatography-mass spectrometry (GC-MS) analysis found that α-Terpinyl acetate (27.2%) and 1,8-Cineole (17.7%) were the major compounds in MLE. These results indicated that L. cubeba leaves have the potential to be a nutraceutical for preventing and improving NLRP3 inflammasome-related diseases.

5.
Front Immunol ; 13: 870627, 2022.
Article in English | MEDLINE | ID: mdl-35669789

ABSTRACT

Aberrant activation of the NLRP3 inflammasome promotes the pathogenesis of many inflammatory diseases. The development of the NLRP3 inflammasome inhibitors from existing drugs for new therapeutic purposes is becoming more important. Candesartan is an angiotensin II receptor antagonist widely used as a blood pressure-lowering drug; however, the inhibitory potential of candesartan on the NLRP3 inflammasome has not yet been investigated. We demonstrated that candesartan significantly inhibited the NLRP3 inflammasome and pyroptosis in macrophages. Mechanistic analysis revealed that candesartan inhibited the expression of NLRP3 and proIL-1ß by suppressing NF-κB activation and reducing the phosphorylation of ERK1/2 and JNK1/2. Candesartan reduced mitochondrial damage and inhibited the NLRP3 inflammasome assembly by suppressing NLRP3 binding to PKR, NEK7 and ASC. In addition, candesartan inhibited IL-1ß secretion partially through autophagy induction. Furthermore, oral administration of candesartan reduced peritoneal neutrophil influx, NLRP3 and ASC expression in peritoneal cells, and lavage fluid concentrations of active caspase-1, IL-1ß, IL-6 and MCP-1 in uric acid crystal-injected mice. These results indicated that candesartan has board anti-inflammatory effects and has the potential to be repositioned to ameliorate inflammatory diseases or NLRP3-associated complications.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Angiotensin Receptor Antagonists , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzimidazoles , Biphenyl Compounds , Drug Repositioning , Inflammasomes/metabolism , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tetrazoles
6.
Mar Drugs ; 21(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36662183

ABSTRACT

Most proteins have the ability to self-associate into homooligomeric protein complexes, which consist of two or more identical subunits. Today, modern methods of molecular modeling are an integral part of the study of many biologically active molecules. In silico methods are widely used in structure establishing and function and activity prediction of lectins - carbohydrate-binding proteins. Here, we described by computer simulation the spatial organization of lectin isolated from the mantle of the mussel Mytilus trossulus (MTL). It was shown that the dimerization of MTL gives a total of six ligand binding sites that may be important for the manifestation its biological properties. The ability of MTL to form a dimeric and oligomeric structure was confirmed by dynamic light scattering and SDS-PAGE methods.


Subject(s)
Mytilus , Animals , Mytilus/metabolism , Lectins/chemistry , Computer Simulation , Binding Sites
7.
Cells ; 10(12)2021 12 14.
Article in English | MEDLINE | ID: mdl-34944043

ABSTRACT

Polysaccharides from marine organisms produce an important regulatory effect on the mammalian immune system. In this study, the immunomodulatory properties of a polysaccharide that was isolated from the coral Pseudopterogorgia americana (PPA) were investigated. PPA increased the expression levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), but not inducible nitric oxide synthase and nitric oxide, in macrophages. A mechanistic study revealed that PPA activated macrophages through the toll-like receptor-4 and induced the generation of reactive oxygen species (ROS), increased the phosphorylation levels of protein kinase C (PKC)-α, PKC-δ and mitogen-activated protein kinases (MAPK), and activated NF-κB. The inhibition of ROS and knockdown of PKC-α reduced PPA-mediated TNF-α and IL-6 expression; however, the knockdown of PKC-δ significantly increased PPA-mediated TNF-α expression. In addition, the inhibition of c-Jun N-terminal kinase-1/2 and NF-κB reduced PPA-mediated TNF-α, IL-6 and COX-2 expression. Furthermore, the inhibition of ROS, MAPK and PKC-α/δ reduced PPA-mediated NF-κB activation, indicating that ROS, MAPK and PKC-α/δ function as upstream signals of NF-κB. Finally, PPA treatment decreased the phagocytosis activity of macrophages and reduced cytokine expression in bacteria-infected macrophages. Taken together, our current findings suggest that PPA can potentially play a role in the development of immune modulators in the future.


Subject(s)
Anthozoa/chemistry , Immunologic Factors/pharmacology , Macrophages/immunology , Polysaccharides/pharmacology , Animals , Cyclooxygenase 2/metabolism , Cytokines/biosynthesis , Escherichia coli/drug effects , Escherichia coli/physiology , Humans , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Lipopolysaccharides , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/microbiology , Mice , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Phagocytosis/drug effects , Polysaccharides/chemistry , Protein Kinase C-alpha/metabolism , Protein Kinase C-delta/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , THP-1 Cells , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Microorganisms ; 9(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34946153

ABSTRACT

Gram-negative bacteria experiencing marine habitats are constantly exposed to stressful conditions dictating their survival and proliferation. In response to these selective pressures, marine microorganisms adapt their membrane system to ensure protection and dynamicity in order to face the highly mutable sea environments. As an integral part of the Gram-negative outer membrane, structural modifications are commonly observed in the lipopolysaccharide (LPS) molecule; these mainly involve its glycolipid portion, i.e., the lipid A, mostly with regard to fatty acid content, to counterbalance the alterations caused by chemical and physical agents. As a consequence, unusual structural chemical features are frequently encountered in the lipid A of marine bacteria. By a combination of data attained from chemical, MALDI-TOF mass spectrometry (MS), and MS/MS analyses, here, we describe the structural characterization of the lipid A isolated from two marine bacteria of the Echinicola genus, i.e., E. pacifica KMM 6172T and E. vietnamensis KMM 6221T. This study showed for both strains a complex blend of mono-phosphorylated tri- and tetra-acylated lipid A species carrying an additional sugar moiety, a d-galacturonic acid, on the glucosamine backbone. The unusual chemical structures are reflected in a molecule that only scantly activates the immune response upon its binding to the LPS innate immunity receptor, the TLR4-MD-2 complex. Strikingly, both LPS potently inhibited the toxic effects of proinflammatory Salmonella LPS on human TLR4/MD-2.

10.
Mar Drugs ; 19(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34564136

ABSTRACT

Lectin from the bivalve Glycymeris yessoensis (GYL) was purified by affinity chromatography on porcine stomach mucin-Sepharose. GYL is a dimeric protein with a molecular mass of 36 kDa, as established by SDS-PAGE and MALDI-TOF analysis, consisting of 18 kDa subunits linked by a disulfide bridge. According to circular dichroism data, GYL is a ß/α-protein with the predominance of ß-structure. GYL preferentially agglutinates enzyme-treated rabbit erythrocytes and recognizes glycoproteins containing O-glycosidically linked glycans, such as porcine stomach mucin (PSM), fetuin, thyroglobulin, and ovalbumin. The amino acid sequences of five segments of GYL were acquired via mass spectrometry. The sequences have no homology with other known lectins. GYL is Ca2+-dependent and stable over a range above a pH of 8 and temperatures up to 20 °C for 30 min. GYL is a pattern recognition receptor, as it binds common pathogen-associated molecular patterns, such as peptidoglycan, LPS, ß-1,3-glucan and mannan. GYL possesses a broad microbial-binding spectrum, including Gram-positive (Bacillus subtilis, Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Vibrio proteolyticus), but not the fungus Candida albicans. Expression levels of GYL in the hemolymph were significantly upregulated after bacterial challenge by V. proteolyticus plus environmental stress (diesel fuel). Results indicate that GYL is probably a new member of the C-type lectin family, and may be involved in the immune response of G. yessoensis to bacterial attack.


Subject(s)
Lectins/chemistry , Lectins/pharmacology , Animals , Bacteria , Bivalvia , Environment , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemagglutinins/metabolism , Hemolymph/chemistry , Stress, Physiological
12.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352689

ABSTRACT

Oral squamous cell carcinoma (OSCC) accounts for 5.8% of all malignancies in Taiwan, and the incidence of OSCC is on the rise. OSCC is also a common malignancy worldwide, and the five-year survival rate remains poor. Therefore, new and effective treatments are needed to control OSCC. In the present study, we prepared ginsenoside M1 (20-O-beta-d-glucopyranosyl-20(S)-protopanaxadiol), a major deglycosylated metabolite of ginsenoside, through the biotransformation of Panax notoginseng leaves by the fungus SP-LSL-002. We investigated the anti-OSCC activity and associated mechanisms of ginsenoside M1 in vitro and in vivo. We demonstrated that ginsenoside M1 dose-dependently inhibited the viability of human OSCC SAS and OEC-M1 cells. To gain further insight into the mode of action of ginsenoside M1, we demonstrated that ginsenoside M1 increased the expression levels of Bak, Bad, and p53 and induced apoptotic DNA breaks, G1 phase arrest, PI/Annexin V double-positive staining, and caspase-3/9 activation. In addition, we demonstrated that ginsenoside M1 dose-dependently inhibited the colony formation and migration ability of SAS and OEC-M1 cells and reduced the expression of metastasis-related protein vimentin. Furthermore, oral administration or subcutaneous injection of ginsenoside M1 significantly reduced tumor growth in SAS xenograft mice. These results indicate that ginsenoside M1 can be translated into a potential therapeutic against OSCC.


Subject(s)
Apoptosis , Cell Movement , Ginsenosides/pharmacology , Mouth Neoplasms/drug therapy , Animals , Cell Proliferation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Front Immunol ; 11: 1115, 2020.
Article in English | MEDLINE | ID: mdl-32582195

ABSTRACT

Shigella is one of the leading bacterial causes of diarrhea worldwide, affecting more than 165 million people annually. Among the serotypes of Shigella, Shigella sonnei is physiologically unique and endemic in human immunodeficiency virus-infected men who have sex with men. The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, a protein complex composed of NLRP3, apoptosis-associated speck-like protein, and caspase-1, recognizes, and responds to pathogen infection and diverse sterile host-derived or environmental danger signals to induce IL-1ß and IL-18 production. Although the Shigella flexneri-mediated activation of the NLRP3 inflammasome has been reported, the effect of S. sonnei on NLRP3 inflammasome activation remains unclear. We found that S. sonnei induced IL-1ß production through NLRP3-dependent pathways in lipopolysaccharide-primed macrophages. A mechanistic study revealed that S. sonnei induced IL-1ß production through P2X7 receptor-mediated potassium efflux, reactive oxygen species generation, lysosomal acidification, and mitochondrial damage. In addition, the phagocytosis of viable S. sonnei was important for IL-1ß production. Furthermore, we demonstrated that NLRP3 negatively regulated phagocytosis and the bactericidal activity of macrophages against S. sonnei. These findings provide mechanistic insight into the activation of the NLRP3 inflammasome by S. sonnei in macrophages.


Subject(s)
Dysentery, Bacillary/immunology , Inflammasomes/immunology , Interleukin-1beta/biosynthesis , Macrophages/immunology , Macrophages/parasitology , Animals , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Shigella sonnei/immunology
14.
Mar Drugs ; 18(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438723

ABSTRACT

Psychrobacter marincola KMM 277T is a psychrophilic Gram-negative bacterium that has been isolated from the internal tissues of an ascidian Polysyncraton sp. Here, we report the structure of the capsular polysaccharide from P. marincola KMM 277T and its effect on the viability and colony formation of human acute promyelocytic leukemia HL-60 cells. The polymer was purified by several separation methods, including ultracentrifugation and chromatographic procedures, and the structure was elucidated by means of chemical analysis, 1-D, and 2-D NMR spectroscopy techniques. It was found that the polysaccharide consists of branched hexasaccharide repeating units containing two 2-N-acetyl-2-deoxy-d-galacturonic acids, and one of each of 2-N-acetyl-2-deoxy-d-glucose, d-glucose, d-ribose, and 7-N-acetylamino-3,5,7,9-tetradeoxy-5-N-[(R)-2-hydroxypropanoylamino]- l-glycero-l-manno-non-2-ulosonic acid. To our knowledge, this is the first finding a pseudaminic acid decorated with lactic acid residue in polysaccharides. The biological analysis showed that the capsular polysaccharide significantly reduced the viability and colony formation of HL-60 cells. Taken together, our data indicate that the capsular polysaccharide from P. marincola KMM 277T is a promising substance for the study of its antitumor properties and the mechanism of action in the future.


Subject(s)
Antineoplastic Agents/pharmacology , HL-60 Cells/drug effects , Polysaccharides/pharmacology , Psychrobacter , Animals , Humans , Oceans and Seas , Structure-Activity Relationship
15.
Cells ; 9(2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31979265

ABSTRACT

Gouty arthritis results from the generation of uric acid crystals within the joints. These uric acid crystals activate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, which is involved in chronic inflammatory diseases, including gouty arthritis. This study identified the polyenylpyrrole derivative 4-hydroxy auxarconjugatin B (4-HAB), a novel autophagy inducer, which attenuated uric acid crystals-mediated activation of the NLRP3 inflammasome in vitro and in vivo. 4-HAB dose-dependently reduced the release of interleukin (IL)-1ß, IL-18, active caspase-1 and apoptosis-associated speck-like protein (ASC) in uric acid crystals-activated macrophages. In a mechanistic study, 4-HAB was shown to inhibit uric acid crystals-induced mitochondrial damage, lysosomal rupture and ASC oligomerization. Additionally, 4-HAB inhibited the NLRP3 inflammasome through Sirt1-dependent autophagy induction. Furthermore, the anti-inflammatory properties of 4-HAB were confirmed in a mouse model of uric acid crystals-mediated peritonitis by the reduced levels of neutrophil influx, IL-1ß, active caspase-1, IL-6 and MCP-1 in lavage fluids. In conclusion, 4-HAB attenuates gouty inflammation, in part by attenuating activation of the NLRP3 inflammasome through the Sirt1/autophagy induction pathway.


Subject(s)
Arthritis, Gouty/pathology , Autophagy/drug effects , Inflammasomes/metabolism , Inflammation/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyrroles/pharmacology , Animals , Arthritis, Gouty/complications , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Disease Models, Animal , Humans , Inflammation/complications , Lipopolysaccharides , Lysosomes/drug effects , Lysosomes/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Models, Biological , Organelle Biogenesis , Protein Multimerization/drug effects , Pyrroles/chemistry , Sirtuin 1/metabolism
16.
Front Immunol ; 11: 607564, 2020.
Article in English | MEDLINE | ID: mdl-33424855

ABSTRACT

Conjugated polyenes are a class of widely occurring natural products with various biological functions. We previously identified 4-hydroxy auxarconjugatin B (4-HAB) as anti-inflammatory agent with an IC50 of ~20 µM. In this study, we synthesized a new anti-inflammatory 4-HAB analogue, F240B, which has an IC50 of less than 1 µM. F240B dose-dependently induced autophagy by increasing autophagic flux, LC3 speck formation and acidic vesicular organelle formation. F240B inhibited NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome activation through autophagy induction. In a mechanistic study, F240B inhibited interleukin (IL)-1ß (IL-1ß) precursor expression, promoted degradation of NLRP3 and IL-1ß, and reduced mitochondrial membrane integrity loss in an autophagy-dependent manner. Additionally, F240B inhibited apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation without affecting the interaction between NLRP3 and ASC or NIMA-related kinase 7 (NEK7) and double-stranded RNA-dependent kinase (PKR). Furthermore, F240B exerted in vivo anti-inflammatory activity by reducing the intraperitoneal influx of neutrophils and the levels of IL-1ß, active caspase-1, IL-6 and monocyte chemoattractant protein-1 (MCP-1) in lavage fluids in a mouse model of uric acid crystal-induced peritonitis. In conclusion, F240B attenuated the NLRP3 inflammasome through autophagy induction and can be developed as an anti-inflammatory agent in the future.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Autophagy/drug effects , Inflammasomes/metabolism , Macrophages/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peritonitis/prevention & control , Animals , Anti-Inflammatory Agents/chemical synthesis , Autophagy-Related Proteins/metabolism , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Peritonitis/chemically induced , Peritonitis/metabolism , Peritonitis/pathology , Protein Stability , RAW 264.7 Cells , Signal Transduction , THP-1 Cells , Uric Acid
17.
Carbohydr Polym ; 229: 115556, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31826483

ABSTRACT

Halomonas halocynthiae KMM 1376T is a Gram-negative bacterium that has been isolated from gill tissue of the ascidian Halocynthia aurantium. Mild acid hydrolysis of the lipopolysaccharide of H. halocynthiae KMM 1376T afforded an O-polysaccharide, which was studied by sugar analysis and NMR spectroscopy. The following structure of the O-polysaccharide presented as sulfated α-D-mannan was established: →2)-α-D-Manp3,6S-(1→3)-α-D-Manp2Ac(∼71%)6S-(1→3)-α-D-Manp-(1→. Study of biological activity has shown that sulfated α-D-mannan can specifically reduce the cell viability and colony formation of the human breast adenocarcinoma MDA-MB-231 cells in a concentration-dependent manner. In addition, polysaccharide inhibits epidermal growth factor induced neoplastic cell transformation in mouse epidermal JB6 Cl41 cells.


Subject(s)
Halomonas/metabolism , Mannans/chemistry , Acetates/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/drug effects , Epidermal Growth Factor/pharmacology , Humans , Hydrolysis , Lipopolysaccharides/chemistry , Mannans/pharmacology , Mice , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology , Sulfates/chemistry
18.
Front Immunol ; 10: 1815, 2019.
Article in English | MEDLINE | ID: mdl-31417575

ABSTRACT

Gonorrhea is a type III legal communicable disease caused by Neisseria gonorrhoeae (NG), one of the most common sexually transmitted bacteria worldwide. NG infection can cause urethritis or systemic inflammation and may lead to infertility or other complications. The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a protein complex composed of NLRP3, apoptosis-associated speck-like protein and caspase-1 and is an important part of the cellular machinery controlling the release of interleukin (IL)-1ß and IL-18 and the pathogenesis of numerous infectious diseases. It has been reported that NG infection activates the NLRP3 inflammasome; however, the underlying mechanism remain unclear. In this report, the signaling pathways involved in the regulation of NG-mediated NLRP3 inflammasome activation in macrophages were studied. The results indicated that viable NG, but not heat-killed or freeze/thaw-killed NG, activated the NLRP3 inflammasome in macrophages through toll-like receptor 2, but not toll-like receptor 4. NG infection provided the priming signal to the NLRP3 inflammasome that induced the expression of NLRP3 and IL-1ß precursor through the nuclear factor kappa B and mitogen-activated protein kinase pathways. In addition, NG infection provided the activation signal to the NLRP3 inflammasome that activated caspase-1 through P2X7 receptor-dependent potassium efflux, lysosomal acidification, mitochondrial dysfunction, and reactive oxygen species production pathways. Furthermore, we demonstrated that NLRP3 knockout increased phagocytosis of bacteria by macrophages and increases the bactericidal activity of macrophages against NG. These findings provide potential molecular targets for the development of anti-inflammatory drugs that could ameliorate NG-mediated inflammation.


Subject(s)
Gonorrhea , Inflammasomes/immunology , Macrophage Activation , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neisseria gonorrhoeae/immunology , Animals , Gonorrhea/immunology , Gonorrhea/pathology , Humans , Macrophages/immunology , Macrophages/microbiology , Macrophages/pathology , Mice , THP-1 Cells
19.
Carbohydr Polym ; 221: 120-126, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31227150

ABSTRACT

Sulfated fucose-containing glycopolymers are currently of great interest because of their wide spectrum of bioactivity, including anti-tumor properties. In this study, the structure of O-polysaccharide (OPS) of the marine bacterium Vadicella arenosi KMM 9024T, its effect on the proliferation of human breast cancer MCF-7 cells and cancer preventive properties were investigated. Two OPS fractions with different molecular weights were isolated and purified from the lipopolysaccharide by mild acid hydrolysis followed by anion-exchange chromatography. The OPS was found to consist of α-(1→3)-linked 2-O-sulfate-d-fucopyranosyl residues, whose structure was deduced by sugar analysis along with 2D NMR spectroscopy. The biological assay indicated that polysaccharide significantly reduced the proliferation and inhibited colony formation of MCF-7 cells in a dose-dependent manner. Besides, the experiment indicated the inhibitory role of polysaccharide on EGF-induced neoplastic cell transformation in mouse epidermal cells. The investigated polysaccharide is the first sulfated fucan isolated from the bacteria.


Subject(s)
Antineoplastic Agents/pharmacology , Galactans/pharmacology , Rhodobacteraceae/chemistry , Sulfuric Acid Esters/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Carbohydrate Sequence , Cell Proliferation/drug effects , Galactans/chemistry , Galactans/isolation & purification , Humans , MCF-7 Cells , Mice , Sulfuric Acid Esters/chemistry , Sulfuric Acid Esters/isolation & purification
20.
Carbohydr Polym ; 202: 157-163, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30286988

ABSTRACT

The sulfated polysaccharides are of study interest due to their high structural diversity and broad spectrum of biological activity including antitumor properties. In this paper, we report on the structural analysis of sulfated O-specific polysaccharide (OPS) and in vitro anticancer activity of O-deacylated lipopolysaccharide (DPS) of the marine-derived bacterium Poseidonocella sedimentorum KMM 9023T achieved by a multidisciplinary approach (chemical analysis, NMR, MS, and bioassay). The OPS is shown to include two rare monosaccharide derivatives: 3-deoxy-9-O-methyl-d-glycero-d-galacto-non-2-ulosonic acid (Kdn9Me) and 3-O-acetyl-2-O-sulfate-d-glucuronic acid (D-GlcA2S3Ac). The structure of polysaccharide moiety of a previously unknown carbohydrate-containing biopolymer is established: →4)-α-Kdnp9Me-(2→4)-α-d-GlcpA2S3Ac-(1→. From a biological point of view, we demonstrate that DPS of the P. sedimentorum KMM 9023T has no cytotoxicity and inhibits colony formation of human HT-29, MCF-7 and SK-MEL-5 cells in a dose-dependent manner. The investigated polysaccharide is the second glycan isolated from the bacteria of the genus Poseidonocella: previously we studied the OPS of P. pacifica KMM 9010T (Kokoulin et al., 2017). Both polysaccharides are sulfated and contain rare residues of ulosonic acids. Thus, obtained findings provide a new knowledge about kinds and antitumor properties of sulfated polysaccharides and can be a starting point for further investigations of mechanisms of anticancer action of carbohydrate-containing biopolymers from marine Gram-negative bacteria.


Subject(s)
Alphaproteobacteria/chemistry , Antineoplastic Agents/pharmacology , O Antigens/pharmacology , Sulfates/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Carbohydrate Conformation , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , O Antigens/chemistry , O Antigens/isolation & purification , Sulfates/chemistry , Sulfates/isolation & purification , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...