Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38794601

ABSTRACT

Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.

2.
Membranes (Basel) ; 13(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37755197

ABSTRACT

In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32-55 nm demonstrated a pure toluene permeance of 84.8-130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33-95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile-acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil.

3.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614322

ABSTRACT

For the first time, double stimuli-responsive properties of poly(N-isopropylacrylamide) (PNIPA) and poly(1-vinylimidazole) (PVIM) block copolymers in aqueous solutions were studied. The synthesis of PNIPA60-b-PVIM90 and PNIPA28-b-PVIM62-b-PNIPA29 was performed using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers were characterized by size exclusion chromatography and 1H NMR spectroscopy. The conformational behavior of the polymers was studied using dynamic light scattering (DLS) and fluorescence spectroscopy (FS). It was found that PNIPA and block copolymers conformation and ability for self-assembly in aqueous medium below and above cloud point temperature depend on the locus of hydrophobic groups derived from the RAFT agent within the chain. Additionally, the length of PVIM block, its locus in the chain and charge perform an important role in the stabilization of macromolecular micelles and aggregates below and above cloud point temperature. At 25 °C the average hydrodynamic radius (Rh) of the block copolymer particles at pH 3 is lower than at pH 9 implying the self-assembling of macromolecules in the latter case. Cloud points of PNIPA60-b-PVIM90 are ~43 °C and ~37 °C at a pH of 3 and 9 and of PNIPA28-b-PVIM62-b-PNIPA29 they are ~35 °C and 31 °C at a pH of 3 and 9. Around cloud point independently of pH, the Rh value for triblock copolymer rises sharply, achieves the maximum value, then falls and reaches the constant value, while for diblock copolymer, it steadily grows after reaching cloud point. The information about polarity of microenvironment around polymer obtained by FS accords with DLS data.


Subject(s)
Acrylic Resins , Polymers , Polymers/chemistry , Acrylic Resins/chemistry , Imidazoles
4.
Polymers (Basel) ; 14(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36501614

ABSTRACT

The review summarizes recent advances in the production of carbon fiber precursors based on melt-spun acrylonitrile copolymers. Approaches to decrease the melting point of polyacrylonitrile and acrylonitrile copolymers are analyzed, including copolymerization with inert comonomers, plasticization by various solvents and additives, among them the eco-friendly ways to use the carbon dioxide and ionic liquids. The methods for preliminary modification of precursors that provides the thermal oxidative stabilization of the fibers without their melting and the reduction in the stabilization duration without the loss of the mechanical characteristics of the fibers are discussed. Special attention is paid to different ways of crosslinking by irradiation with different sources. Examples of the carbon fibers preparation from melt-processable acrylonitrile copolymers are considered in detail. A patent search was carried out and the information on the methods for producing carbon fibers from precursors based on melt-spun acrylonitrile copolymers are summarized.

5.
Polymers (Basel) ; 14(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35160544

ABSTRACT

Reversible addition-fragmentation chain transfer polymerization was successfully applied to the synthesis of the gradient copolymer of acrylic acid and vinyl acetate in the selective solvent. The gradient degree of the copolymer was varied by the monomer feed. The monomer conversion was found to affect the ability of the copolymer to self-assemble in aqueous solutions in narrowly dispersed micelles with an average hydrodynamic radius of about 250 nm. Furthermore, the synthesized copolymers also tended to self-assemble throughout copolymerization in the selective solvent.

6.
Polymers (Basel) ; 14(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35160559

ABSTRACT

The parallel development of reversible deactivation radical polymerization and click reaction concepts significantly enriches the toolbox of synthetic polymer chemistry. The synergistic effect of combining these approaches manifests itself in a growth of interest to the design of well-defined functional polymers and their controlled conjugation with biomolecules, drugs, and inorganic surfaces. In this review, we discuss the results obtained with reversible addition-fragmentation chain transfer (RAFT) polymerization and different types of click reactions on low- and high-molar-mass reactants. Our classification of literature sources is based on the typical structure of macromolecules produced by the RAFT technique. The review addresses click reactions, immediate or preceded by a modification of another type, on the leaving and stabilizing groups inherited by a growing macromolecule from the chain transfer agent, as well as on the side groups coming from monomers entering the polymerization process. Architecture and self-assembling properties of the resulting polymers are briefly discussed with regard to their potential functional applications, which include drug delivery, protein recognition, anti-fouling and anti-corrosion coatings, the compatibilization of polymer blends, the modification of fillers to increase their dispersibility in polymer matrices, etc.

7.
Materials (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36614445

ABSTRACT

The influence of alkyl acrylate comonomers in the rank of methyl- (MA), butyl- (BA), ethylhexyl- (EGA), and lauryl- (LA) in ternary copolymers based on acrylonitrile, alkyl acrylate and acrylamide (PAN-alkyl acrylate) on their solutions rheological behavior in dimethyl sulfoxide (DMSO), and mechanical properties of the spun fibers have been investigated. To reveal the role of molecular weight, two series of copolymers with molecular weights of ~50 and 150 kg/mol have been studied. It was shown that the nature of the alkyl acrylate does not significantly affect the rheological behavior of their solutions regardless of the length of the alkyl substituent and the content of the alkyl acrylate in copolymers. An exception is the high-molecular PAN-LA, which is characterized by a non-Newtonian behavior at lower concentrations. Two series of fibers were spun from the characterized ranks of low and high-molecular-weight copolymer solutions. For all copolymers, a 2.5-5-fold increase in the strength and elastic modulus of the fiber was found with an increase in Mw. It has been shown that PAN-MA and PAN-LA fibers have a tensile strength of 800 MPa that is 1.5-3 times higher than that of other copolymers spun in the same conditions.

8.
Polymers (Basel) ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36616355

ABSTRACT

In the present research, we have synthesized new vinyl ketone monomers with mesogenic substituents, namely, 8-(3'-chloro-4'-pentyl-[1,1'-biphenyl-4-oxy)oct-1-en-3-one (BVK) and 8-[2'-chloro-4‴-octyl-[1,1':4',1″:4″,1‴-quaterphenyl-4-oxy]oct-1-en-3-one (QVK). The comparison of BVK, QVK, and previously synthesized 8-((4″-((1R,4S)-4-butylcyclohexyl)-2'-chloro-[1,1',4',1″-terphenyl]-4-yl)oxy)oct-1-en-3-one (TVK) has revealed that all of them are able to form crystals, while their ability to exhibit liquid crystalline behavior depends on the number of phenyl substituents attached to the para-position of the phenoxy group and is observed for TVK and QVK only. All of the monomers are able to achieve self-polymerization upon heating and free radical polymerization in bulk or in solution under the action of the common radical initiator AIBN. We have also succeeded in the RAFT polymerization of the synthesized vinyl ketones BVK and TVK using asymmetrical trithiocarbonates. The synthesized poly(vinyl ketones) exhibit LC behavior and are able to undergo photodegradation upon UV irradiation.

9.
Molecules ; 26(14)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34299406

ABSTRACT

Nanocomposites based on CdSe or CdSe/ZnS quantum dots (QDs) and poly(methyl methacrylate) (PMMA) of different molecular weights and functionality were synthesized by ligand exchange of oleic acid with RAFT-based PMMA. The successful ligand exchange was confirmed by dynamic light scattering in combination with the approach "macromolecules-ghosts" and transmission electron microscopy. Comparative study of mono- and telechelics of PMMA revealed the similarities and differences in their behavior in formation of complexes with QDs and the optical properties of the corresponding nanocomposites. Telechelics exhibited higher efficiency in the complex formation and seemed to be promising candidates for the construction of devices based on QDs and polymer matrix for optical applications.

10.
Materials (Basel) ; 13(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764383

ABSTRACT

The influence of introducing acrylic acid (AA) into the reaction mixture with acrylonitrile at the synthesis of copolymers by free-radical polymerization (FRP) and radical polymerization with reversible addition-fragmentation chain transfer (RAFT) on the rheological properties of their solutions in dimethyl sulfoxide, as well as on the capability to spin fibers by the mechanotropic method, is analyzed. The influence of AA dosing conditions on the rheological properties of the solutions in the concentration range above the crossover point was not revealed. In the case of RAFT synthesis, the rheological properties differ distinctively in the high concentration region that is expressed by unusual viscoelastic characteristics. Dilute solution viscometry revealed the influence of the comonomer loading order on the interaction intensity of the copolymer macromolecules with a solvent, which is more pronounced for samples synthesized by FRP and can be associated with the copolymers' molecular structure. Fiber spinning from solutions of polyacrylonitrile and its copolymers (PAN) synthesized by the RAFT method was not able to achieve a high degree of orientation drawing, while for polymers with a wider molecular weight distribution synthesized by FRP, it was possible to realize large stretches, which led to high-quality fibers with strength values up to 640 MPa and elongation at a break of 20%.

SELECTION OF CITATIONS
SEARCH DETAIL
...