Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Int J Part Ther ; 11: 100013, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38757083

ABSTRACT

Purpose: To evaluate intrafractional motion effects as a function of peak-to-peak motion and period during single-field, single-fraction and single-field, multifraction irradiation of the moving target in spot-scanning proton therapy. Materials and Methods: An in-house dynamic phantom was used to simulate peak-to-peak motion of 5, 10, and 20 mm with periods of 2, 4, and 8 seconds. The dose distribution in the moving target was measured using radiochromic films. During the perpendicular motion, the film was fixed and moved perpendicular to the beam direction without changing the water equivalent thickness (WET). During longitudinal motion, the film was fixed and moved along the beam direction, causing a change in WET. Gamma index analysis was used with criteria of 3%/3 mm and 3%/2 mm to analyze the dose distributions. Results: For single-fraction irradiation, varying the period did not result in a significant difference in any of the metrics used (P > .05), except for the local dose within the planning target volume (P < .001). In contrast, varying peak-to-peak motion was significant (P < .001) for all metrics except for the mean planning target volume dose (P ≈ .88) and the local dose (P ≈ .47). The perpendicular motion caused a greater decrease in gamma passing rate (3%/3 mm) than WET variations (65% ± 5% vs 85% ± 4%) at 20 mm peak-to-peak motion. Conclusion: The implementation of multifraction irradiation allowed to reduce hot and cold spots but did not reduce dose blurring. The motion threshold varied from 7 to 11 mm and depended on the number of fractions, the type of motion, the acceptance criteria, and the calculation method used.

2.
Sci Rep ; 14(1): 10818, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734772

ABSTRACT

This study focuses on the effect of an emerging source of waste, lithium iron phosphate (LFP) cathode materials, on the hydrometallurgical recycling of the currently dominant industrial battery waste that is rich in transition metals (Ni, Co, Mn, and Li). The effects of the dosage of LFP, initial acidity, and timing of LFP reductant addition were investigated in sulfuric acid (H2SO4) leaching (t = 3 h, T = 60 °C, ω = 300 rpm). The results showed that addition of LFP increased both transition metal extraction and acid consumption. Further, the redox potential was lowered due to the increased presence of Fe2+. An initial acidity of 2.0 mol/L H2SO4 with acid consumption of 1.3 kg H2SO4/kg black mass provided optimal conditions for achieving a high leaching yield (Co = 100%, Ni = 87.6%, Mn = 91.1%, Li = 100%) and creating process solutions (Co 8.8 g/L, Ni 13.8 g/L, Li 6.7 g/L, Mn 7.6 g/L, P 12.1 g/L) favorable for subsequent hydrometallurgical processing. Additionally, the overall efficiency of H2O2 decreased due to its decomposition by high concentrations of Fe2+ and Mn2+ when H2O2 was added after t = 2 h, leading to only a minor increase in final battery metals extraction levels.

3.
Molecules ; 29(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474451

ABSTRACT

This study focuses on the behavior of volatile organic compounds in beef after irradiation with 1 MeV accelerated electrons with doses ranging from 0.25 kGy to 5 kGy to find reliable dose-dependent markers that could be used for establishing an effective dose range for beef irradiation. GC/MS analysis revealed that immediately after irradiation, the chemical yield and accumulation rate of lipid oxidation-derived aldehydes was higher than that of protein oxidation-derived aldehydes. The nonlinear dose-dependent relationship of the concentration of volatile organic compounds was explained using a mathematical model based on the simultaneous occurrence of two competing processes: decomposition of volatile compounds due to direct and indirect action of accelerated electrons, and accumulation of volatile compounds due to decomposition of other compounds and biomacromolecules. A four-day monitoring of the beef samples stored at 4 °C showed that lipid oxidation-derived aldehydes, protein oxidation-derived aldehydes and alkanes as well as alcohol ethanol as an indicator of bacterial activity were dose-dependent markers of biochemical processes occurring in the irradiated beef samples during storage: oxidative processes during direct and indirect action of irradiation, oxidation due to the action of reactive oxygen species, which are always present in the product during storage, and microbial-enzymatic processes. According to the mathematical model of the change in the concentrations of lipid oxidation-derived aldehydes over time in the beef samples irradiated with different doses, it was found that doses ranging from 0.25 kGy to 1 kGy proved to be most effective for beef irradiation with accelerated electrons, since this dose range decreases the bacterial content without considerable irreversible changes in chemical composition of chilled beef during storage.


Subject(s)
Volatile Organic Compounds , Animals , Cattle , Electrons , Oxidation-Reduction , Lipids , Aldehydes/analysis
4.
Sci Rep ; 13(1): 21445, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052892

ABSTRACT

The removal of trivalent iron and aluminum was studied from synthetic Li-ion battery leach solution by phosphate and hydroxide precipitation (pH 2.5-4.25, t = 3 h, T = 60 °C). Phosphate precipitation exhibited both crystal nucleation initiation (pH 2 vs. pH 3) as well as complete (~ 99%) Fe and Al removal at lower pH compared to hydroxide precipitation (pH 3 vs. 3.5). The precipitation time of phosphate was shorter (40 min) than that of hydroxide precipitation (80 min). At pH 4 the loss of valuable metals (Li, Ni, Co) in the precipitate was negligible in the phosphate cake, whereas in the hydroxide process the co-precipitation was 4-5% for Li, Ni and Co. The filtration rate of phosphate precipitate was shown to be significantly faster. The presence of fluoride did not have any notable effect on phosphate precipitation, whereas in hydroxide precipitation, it potentially had a negative effect on aluminum extraction.

5.
Int J Mol Sci ; 24(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37833874

ABSTRACT

The results of a comprehensive study of the patterns of structural and functional changes in bone tissue samples after combined (ozone + radiation) sterilization are presented. The study used a different approach to the sterilization process with selective ozone or radiation exposure and an integral, combined one, based on a combined ozone-oxygen treatment of bone samples at the first stage and radiation at the second. The methods of IR spectroscopy, scanning electron microscopy with a prefix for elemental analysis, atomic force microscopy, and mechanical analysis with determination of elastic-plastic properties (Vickers microhardness index) were used in the work. It is shown that the ozone exposure used at the first stage of the combined sterilization process of bone implants does not lead to negative consequences with respect to their properties and characteristics. The results obtained serve as a scientific and methodological basis for the further improvement and optimization of sterilization technologies (including combined). They also offer a comprehensive justification of the parameters of sterilization regimes to ensure the safety of using bone implants during reconstructive operations, minimizing structural and functional changes in bone matter, and creating effective health-saving technologies and the possibility of using them for various biomedical applications.


Subject(s)
Ozone , Sterilization , Sterilization/methods , Prostheses and Implants , Ozone/chemistry , Technology , Bone and Bones
6.
Molecules ; 28(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570742

ABSTRACT

The efficiency of food irradiation depends on the accuracy of the irradiation dose range that is sufficient for inhibiting microbiological growth without causing an irreversible change to the physical and chemical properties of foods. This study suggests that the concentration of hemoglobin derivatives can be used as a criterion for establishing the limit for chilled beef irradiation at which irradiation-induced oxidation becomes irreversible. The express spectrophotometry method for estimating the hemoglobin derivative concentration shows a nonlinear increase in methemoglobin concentration from 15% to 50% in beef irradiated by accelerated electrons with the doses ranging from 250 Gy to 10,000 Gy. The monitoring of the hemoglobin derivative concentration for three days after irradiation shows nonmonotonous dependencies of methemoglobin concentration in beef in the storage time since the oxidation of hemoglobin occur as a result of irradiation and biochemical processes in beef during storage. The proposed method based on the quantitative analysis of the hemoglobin derivative concentration can be used to estimate the oxidation level for irradiation of foods containing red blood cells. The study proposes a model that describes the change in hemoglobin derivative concentration in beef after irradiation considering that oxidation of hemoglobin can be triggered by the direct ionization caused by accelerated electrons, biochemical processes as a result of bacterial activity, and reactive oxygen species appearing during irradiation and storage. This research throws light on the mechanisms behind food irradiation during storage that should be taken into account for selecting the optimal parameters of irradiation.


Subject(s)
Electrons , Methemoglobin , Animals , Cattle , Methemoglobin/analysis , Hemoglobins , Oxidation-Reduction , Erythrocytes/chemistry
7.
Phys Med ; 112: 102612, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329740

ABSTRACT

PURPOSE: To investigate a novel optical markerless respiratory sensor for surface guided spot scanning proton therapy and to measure its main technical characteristics. METHODS: The main characteristics of the respiratory sensor including sensitivity, linearity, noise, signal-to-noise, and time delay were measured using a dynamic phantom and electrical measuring equipment on a laboratory stand. The respiratory signals of free breathing and deep-inspiration breath-hold patterns were acquired for various distances with a volunteer. A comparative analysis of this sensor with existing commercially available and experimental respiratory monitoring systems was carried out based on several criteria including principle of operation, patient contact, application to proton therapy, distance range, accuracy (noise, signal-to-noise ratio), and time delay (sampling rate). RESULTS: The sensor provides optical respiratory monitoring of the chest surface over a distance range of 0.4-1.2 m with the RMS noise of 0.03-0.60 mm, SNR of 40-15 dB (for motion with peak-to-peak of 10 mm), and time delay of 1.2 ± 0.2 ms. CONCLUSIONS: The investigated optical respiratory sensor was found to be appropriate to use in surface guided spot scanning proton therapy. This sensor combined with a fast respiratory signal processing algorithm may provide accurate beam control and a fast response in patients' irregular breathing movements. A careful study of correlation between the respiratory signal and 4DCT data of tumor position will be required before clinical implementation.


Subject(s)
Neoplasms , Proton Therapy , Humans , Movement , Respiration , Motion , Phantoms, Imaging
8.
Food Chem ; 414: 135668, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36841105

ABSTRACT

High-energy electron beam and X-ray processing of foods can be used for extending their storage life and for combating pests and pathogens. Several instrumental techniques are used to estimate irradiation doses in foods, but these methods are complex and laborious, require expensive equipment, and do not always allow to determine low doses. This study was aimed at developing simple methods for detecting irradiation in potato tubers and for dose estimation. We used a "fingerprinting" strategy that does not involve quantitation of any compound; instead, the rate of indicator reactions involving carbocyanine dyes is measured. The dye content was monitored by its near-infrared fluorescence intensity and visible-light absorption. Potatoes not subjected to treatment and those irradiated with different doses (10, 100, 1000, 5000, or 10,000 Gray) could be distinguished by linear discriminant analysis. Thus, the order of magnitude of the absorbed dose can be estimated with 89% ± 3% accuracy for a mixture of tubers of two potato varieties irradiated with an electron beam or with 95% ± 8% accuracy for one variety irradiated with an X-ray source.


Subject(s)
Solanum tuberosum , X-Rays , Electrons
9.
Front Oncol ; 12: 785917, 2022.
Article in English | MEDLINE | ID: mdl-35359412

ABSTRACT

Optimized conformal total body irradiation (OC-TBI) is a highly conformal image guided method for irradiating the whole human body while sparing the selected organs at risk (OARs) (lungs, kidneys, lens). This study investigated the safety and feasibility of pediatric OC-TBI with the helical TomoTherapy (TomoTherapy) and volumetric modulated arc (VMAT) modalities and their implementation in routine clinical practice. This is the first study comparing the TomoTherapy and VMAT modalities in terms of treatment planning, dose delivery accuracy, and toxicity for OC-TBI in a single-center setting. The OC-TBI method with standardized dosimetric criteria was developed and implemented with TomoTherapy. The same OC-TBI approach was applied for VMAT. Standardized treatment steps, namely, positioning and immobilization, contouring, treatment planning strategy, plan evaluation, quality assurance, visualization and treatment delivery procedure were implemented for 157 patients treated with TomoTherapy and 52 patients treated with VMAT. Both modalities showed acceptable quality of the planned target volume dose coverage with simultaneous OARs sparing. The homogeneity of target irradiation was superior for TomoTherapy. Overall assessment of the OC-TBI dose delivery was performed for 30 patients treated with VMAT and 30 patients treated with TomoTherapy. The planned and delivered (sum of doses for all fractions) doses were compared for the two modalities in groups of patients with different heights. The near maximum dose values of the lungs and kidneys showed the most significant variation between the planned and delivered doses for both modalities. Differences in the patient size did not result in statistically significant differences for most of the investigated parameters in either the TomoTherapy or VMAT modality. TomoTherapy-based OC-TBI showed lower variations between planned and delivered doses, was less time-consuming and was easier to implement in routine practice than VMAT. We did not observe significant differences in acute and subacute toxicity between TomoTherapy and VMAT groups. The late toxicity from kidneys and lungs was not found during the 2.3 years follow up period. The study demonstrates that both modalities are feasible, safe and show acceptable toxicity. The standardized approaches allowed us to implement pediatric OC-TBI in routine clinical practice.

10.
Sci Rep ; 12(1): 750, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35031660

ABSTRACT

The purpose of this work was to compare the effect of electron and X-ray irradiation on microbiological content and volatile organic compounds in chilled turkey meat. Dose ranges which significantly suppress the pathogenic microflora while maintaining the organoleptic properties of the turkey meat are different for electron and X-ray irradiation. According to the study it is recommended to treat chilled turkey using X-ray irradiation with the dose ranging from 0.5 to 0.75 kGy, while in electron irradiation permissible doses should be within 0.25-1 kGy. Three main groups of volatile compounds: alcohols, ketones, and aldehydes-were found in irradiated and non-irradiated samples of turkey meat. It was found that the total amount of aldehydes, which are responsible for the formation of a specific odor of irradiated meat products, increases exponentially with the increase in the absorbed dose for both types of irradiation. It was established that acetone can be used as a potential marker of the fact of exposure of low-fat meat products to ionizing radiation.

11.
Sci Rep ; 11(1): 23283, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34857788

ABSTRACT

The role of aluminum concentration and pH in the purification of waste Li-ion battery leach solution was investigated using NaOH and LiOH as neutralization agents ([H2SO4] = 0.313 M, t = 6 h). Solution was prepared from synthetic chemicals to mimic real battery leach solution. Results demonstrate that pH (3.5-5.5) has a significant effect on the precipitation of metals (Fe, Al, Ni, Cu, Co, Mn, and Li), whereas higher temperature (T = 30 and 60 °C) decreases the precipitation pH of metals. Iron and aluminum were both found to precipitate at ca. pH 4 and the presence of aluminum in PLS clearly decreased the separation efficiency of Fe vs. active material metals (Ni, Co, Li). In the absence of dissolved aluminum, Fe precipitated already at pH 3.5 and did not result in the co-precipitation of other metals. Additionally, the Al-free slurry had a superior filtration performance. However, aluminum concentrations of 2 and 4 g/L were found to cause loss of Ni (2-10%), Co (1-2%) and Li (2-10%) to the Fe-Al hydroxide cake at pH 4. The use of LiOH (vs. NaOH) resulted in 50% lower co-precipitation of Ni, Co and Li. Overall, these results demonstrate that hydroxide precipitation can be an effective method to remove iron from battery waste leach solutions at aluminum concentrations of < 2 g/L only. Although the highest level of lithium loss in the cake was found at pH 4, the loss was shown to decrease with increasing pH.

SELECTION OF CITATIONS
SEARCH DETAIL
...