Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(9): 2833-2842, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32067025

ABSTRACT

Phase-pure orthorhombic compositions at a Ln/Mo ratio ∼ 5.2-5.7 (Ln = Gd, Dy, Ho) have been obtained for the first time by prolonged (40-160 h) heat treatment of mechanically activated 5Ln2O3 + 2MoO3 (Ln = Gd, Dy, Ho) oxide mixtures at 1200 °C. Although the starting Ln : Mo ratio was 5 : 1 (Ln10Mo2O21 (Ln = Dy, Ho)), it changed slightly in the final product due to the volatility of molybdenum oxide at 1200 °C (40-160 h) (ICP-MS analysis). Brief high-temperature firing (1600 °C, 3 h) of 5Ln2O3 + 2MoO3 (Ln = Gd, Dy, Ho) oxide mixtures leads to the formation of phase-pure fluorites with compositions close to Ln10Mo2O21 (Ln = Gd, Dy, Ho). Gd10Mo2O21 molybdate seems to undergo an order-disorder (orthorhombic-fluorite) phase transition in the range of 1200-1600 °C. For the first time, using the neutron diffraction method, it was shown that low-temperature phases with a Ln/Mo ratio ∼ 5.2-5.7 (Ln = Gd, Dy, Ho) have an orthorhombic structure rather than a tetragonal structure. Proton contribution to the total conductivity of Ln10Mo2O21 (Ln = Gd, Dy, Ho) fluorites and gadolinium and dysprosium orthorhombic phases in a wet atmosphere was observed for the first time. In both orthorhombic and fluorite phases, the total conductivity in wet air decreases with decreasing lanthanide ionic radii. In a wide temperature range, the compounds under study exhibit paramagnetic behaviour. However, the orthorhombic phases of Dy and Ho compounds reach the antiferromagnetic state at 2.4 K and 2.6 K, respectively.

2.
Materials (Basel) ; 12(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374863

ABSTRACT

Sm2-xCaxZr2O7-x/2 (x = 0, 0.05, 0.1) and Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) mixed oxides in a pyrochlore-fluorite morphotropic phase region were prepared via the mechanical activation of oxide mixtures, followed by annealing at 1600 °C. The structure of the solid solutions was studied by X-ray diffraction and refined by the Rietveld method, water content was determined by thermogravimetry (TG), their bulk and grain-boundary conductivity was determined by impedance spectroscopy in dry and wet air (100-900 °C), and their total conductivity was measured as a function of oxygen partial pressure in the temperature range: 700-950 °C. The Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) pyrochlore solid solutions, lying near the morphotropic phase boundary, have proton conductivity contribution both in the grain bulk and on grain boundaries below 600 °C, and pure oxygen-ion conductivity above 700 °C. The 500 °C proton conductivity contribution of Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) is ~ 1 × 10-4 S/cm. The fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.1) solid solution has oxygen-ion bulk conductivity in entire temperature range studied, whereas proton transport contributes to its grain-boundary conductivity below 700 °C. As a result, of the morphotropic phase transition from pyrochlore Sm2-xCaxZr2O7-x/2 (x = 0.05, 0.1) to fluorite-like Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1), the bulk proton conductivity disappears and oxygen-ion conductivity decreases. The loss of bulk proton conductivity of Gd2-xCaxZr2O7-x/2 (x = 0.05, 0.1) can be associated with the fluorite structure formation. It is important to note that the degree of Ca substitution in such solid solutions (Ln2-xCax)Zr2O7-δ (Ln = Sm, Gd) is low, x < 0.1. In both series, grain-boundary conductivity usually exceeds bulk conductivity. The high grain-boundary proton conductivity of Ln2-xCaxZr2O7-x/2 (Ln = Sm, Gd; x = 0.1) is attributable to the formation of an intergranular CaZrO3-based cubic perovskite phase doped with Sm or Gd in Zr sublattice.

SELECTION OF CITATIONS
SEARCH DETAIL
...