Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558343

ABSTRACT

Transformation of carbon oxides into valuable feedstocks is an important challenge nowadays. Carbon oxide hydrogenation to hydrocarbons over iron-based catalysts is one of the possible ways for this transformation to occur. Carbon supports effectively increase the dispersion of such catalysts but possess a very low bulk density, and their powders can be toxic. In this study, spark plasma sintering was used to synthesize new bulk and dense potassium promoted iron-based catalysts, supported on N-doped carbon nanomaterials, for hydrocarbon synthesis from syngas. The sintered catalysts showed high activity of up to 223 µmolCO/gFe/s at 300-340 °C and a selectivity to C5+ fraction of ~70% with a high portion of olefins. The promising catalyst performance was ascribed to the high dispersity of iron carbide particles, potassium promotion of iron carbide formation and stabilization of the active sites with nitrogen-based functionalities. As a result, a bulk N-doped carbon-supported iron catalyst with 3D structure was prepared, for the first time, by a fast method, and demonstrated high activity and selectivity in hydrocarbon synthesis. The proposed technique can be used to produce well-shaped carbon-supported catalysts for syngas conversion.

2.
Chem Soc Rev ; 51(18): 7994-8044, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36043509

ABSTRACT

Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.


Subject(s)
Carbon Dioxide , Fossils , Alkanes , Alkenes/chemistry , Carbon Dioxide/chemistry , Methanol
3.
Materials (Basel) ; 14(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34885587

ABSTRACT

An approach for polymer-carbon nanotube (CNT) composite preparation is proposed based on a two-step supercritical fluid treatment. The first step, rapid expansion of a suspension (RESS) of CNTs in supercritical carbon dioxide, is used to de-bundle CNTs in order to simplify their mixing with polymer in solution. The ability of RESS pre-treatment to de-bundle CNTs and to cause significant bulk volume expansion is demonstrated. The second step is the formation of polymer-CNT composite from solution via supercritical antisolvent (SAS) precipitation. SAS treatment allows avoiding CNT agglomeration during transition from a solution into solid state due to the high speed of phase transition. The combination of these two supercritical fluid methods allowed obtaining a polycarbonate-multiwalled carbon nanotube composite with tensile strength two times higher compared to the initial polymer and enhanced elasticity.

4.
Phys Chem Chem Phys ; 21(24): 13234-13240, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31180100

ABSTRACT

Adsorption of model polar (water) and non-polar (n-hexane) compounds on the surface of oxidized and non-oxidized carbon nanotube (CNT) supports at different stages of Co/CNT catalyst preparation has been studied to reveal the influence of the surface functionalization of the CNT support on the catalyst selectivity in Fischer-Tropsch synthesis (FTS). Dynamic vapor sorption experiments showed that defunctionalization of the surface of the CNT support during catalyst annealing and reduction led to its hydrophobization and, as a result, no noticeable difference was observed between the adsorption properties of the oxidized and non-oxidized supports towards water and hydrocarbons. Therefore, oxidation of the CNT support does not significantly affect the adsorption properties of the supported catalyst and it is not a crucial factor for the catalyst selectivity in FTS.

5.
Phys Chem Chem Phys ; 20(37): 24117-24122, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30204182

ABSTRACT

Thermal defunctionalization of oxidized jellyfish-like few-layer graphene nanoflakes was studied under non-isothermal conditions by simultaneous thermal analysis. Activation energies for thermal decomposition of different oxygen functional groups were calculated by the Kissinger method and compared with those for oxidized carbon nanotubes. Oxygen content in graphene nanoflakes was found to significantly affect the decomposition activation energies of carboxylic and keto/hydroxy acids because of their acceptor properties and strong distortion of the graphene layers at the edges of the nanoflakes. The structure of the carbon material and the oxygen chemical state significantly influence the decomposition kinetics of thermally stable oxygen-containing groups. The activation energy for thermal decomposition of phenol groups (110-150 kJ mol-1) is close to that for graphene oxide reduction.

6.
ACS Appl Mater Interfaces ; 10(24): 20983-20994, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29847909

ABSTRACT

3D frameworks of carbon nanotubes (CNTs) uniformly decorated by cobalt oxide or carbon-encapsulated cobalt nanoparticles were obtained by spark plasma sintering for the first time. The influence of the sintering temperature ( TS) and Co content on the morphology, structure, and electrical and magnetic properties of the obtained materials was investigated by Raman spectroscopy, electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and in situ magnetometry. It was shown that application of the SPS technique allowed simultaneous compaction of the material, formation of CNT framework, and Co oxide reduction. The appearance of the carbon shell around 4-10 nm Co particles was observed at TS > 600 °C. At higher TS, the Co particle size increased (up to 300 nm at 1400 °C), whereas the carbon shell ordered and thickened. The formation of large-size few-layers graphene sheets was observed at TS = 1400 °C. Electrical conductivity of the composites was found to be higher than that of sintered pristine CNTs and varied in the range of 500-12 500 Sm/m. Magnetic experiments demonstrated soft magnetization of the samples and the coercivity of 200-300 Oe. Thus, the obtained CNT-based material is simultaneously compact, formable, electroconductive, and ferromagnetic. Its properties can be tuned by variation of the sintering parameters. Synthesized cobalt-modified carbon 3D structures are promising for the application in magnetic separation, catalysis, fuel cells, and electromagnetic shielding.

7.
Phys Chem Chem Phys ; 19(3): 2276-2285, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28054674

ABSTRACT

Pristine, oxidized and defunctionalized carbon nanotubes (CNTs) were studied by Raman spectroscopy, X-ray diffraction, transmission electron microscopy and low temperature nitrogen adsorption. The Raman spectra of the studied samples in the range of 900-1800 cm-1 were deconvoluted into five components to reveal the CNT oxidation mechanism. It was found that the oxidation resulted in the reduction of graphite components and ordering of both the structured and defect part of CNTs. Acid treatment also led to different types of disorders in the surface layers of CNTs. Polyene-type, polyphenylene-type and turbostratic fragments were detected as a result of partial exfoliation. Investigation of defunctionalized CNTs showed the ordering of edge carbon atoms as well as the invariability of the total amount of defects. The study of CNTs as supports for Co-based catalysts revealed a simultaneous decrease in the number of defect fragments and increase in the number of edge carbon atoms during catalyst preparation and reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...