Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2402660121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38820001

ABSTRACT

Molecular chirality has long been monitored in the frequency domain in the ultraviolet, visible, and infrared regimes. Recently developed time-domain approaches can detect time-dependent chiral dynamics by enhancing intrinsically weak chiral signals. Even-order nonlinear signals in chiral molecules have gained attention thanks to their existence in the electric dipole approximation, without relying on the weaker higher-order multipole interactions. We illustrate the optimization of temporal polarization pulse-shaping in various frequency ranges (infrared/optical and optical/X ray) to enhance chiral nonlinear signals. These signals can be recast as an overlap integral of matter and field pseudoscalars which contain the relevant chiral information. Simulations are carried out for second- and fourth-order nonlinear spectroscopies in L-tryptophan.

2.
J Chem Theory Comput ; 20(1): 280-289, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38128473

ABSTRACT

We calculate the χ(4) optical response of an oriented photosystem II reaction center of purple bacteria described by the Frenkel exciton model using nonlinear exciton equations (NEE). This approach treats each chromophore as an anharmonic oscillator and provides an intuitive quasiparticle picture of nonlinear spectroscopic signals of interacting excitons. It provides a computationally powerful description of nonlinear spectroscopic signals that avoids complete diagonalization of the total Hamiltonian. Expressions for the second- and the fourth-order nonlinear signals are derived. The NEE have been successfully employed in the past to describe even-order-wave-mixing. Here, we extend them to aggregates with broken inversion symmetries. Even-order susceptibilities require the introduction of permanent dipoles, which allow to directly probe low-frequency intraband transitions of excitons.

3.
J Phys Chem Lett ; 14(48): 10803-10809, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38015605

ABSTRACT

Even-order spectroscopies such as sum-frequency generation (SFG) and difference-frequency generation (DFG) can serve as direct probes of molecular chirality. Such signals are usually given by the sum of several interaction pathways that carry different information about matter. Here we focus on DFG, involving impulsive optical-optical-IR interactions, where the last IR pulse probes vibrational transitions in the ground or excited electronic state manifolds, depending on the interaction pathway. Spectroscopy with classical light can use phase matching to select the two pathways. In this theoretical study, we propose a novel quantum interferometric protocol that uses entangled photons to isolate individual pathways. This additional selectivity originates from engineering the state of light using a Zou-Wang-Mandel interferometer combined with coincidence detection.

4.
Acc Chem Res ; 56(20): 2753-2762, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37782841

ABSTRACT

ConspectusOptical cavities have been established as a powerful platform for manipulating the spectroscopy and photophysics of molecules. Molecules placed inside an optical cavity will interact with the cavity field, even if the cavity is in the vacuum state with no photons. When the coupling strength between matter excitations, either electronic or vibrational, and a cavity photon mode surpasses all decay rates in the system, hybrid light-matter excitations known as cavity polaritons emerge. Originally studied in atomic systems, there has been growing interest in studying polaritons in molecules. Numerous studies, both experimental and theoretical, have demonstrated that the formation of molecular polaritons can significantly alter the optical, electronic, and chemical properties of molecules in a noninvasive manner.This Account focuses on novel studies that reveal how optical cavities can be employed to control electronic excitations, both valence and core, in molecules and the spectroscopic signatures of molecular polaritons. We first discuss the capacity of optical cavities to manipulate and control the intrinsic conical intersection dynamics in polyatomic molecules. Since conical intersections are responsible for a wide range of photochemical and photophysical processes such as internal conversion, photoisomerization, and singlet fission, this provides a practical strategy to control molecular photodynamics. Two examples are given for the internal conversion in pyrazine and singlet fission in a pentacene dimer. We further show how X-ray cavities can be exploited to control the core-level excitations of molecules. Core polaritons can be created from inequivalent core orbitals by exchanging X-ray cavity photons. The core polaritons can also alter the selection rules in nonlinear spectroscopy.Polaritonic states and dynamics can be monitored by nonlinear spectroscopy. Quantum light spectroscopy is a frontier in nonlinear spectroscopy that exploits the quantum-mechanical properties of light, such as entanglement and squeezing, to extract matter information inaccessible by classical light. We discuss how quantum spectroscopic techniques can be employed for probing polaritonic systems. In multimolecule polaritonic systems, there exist two-polariton states that are dark in the two-photon absorption spectrum due to destructive interference between transition pathways. We show that a time-frequency entangled photon pair can manipulate the interference between transition pathways in the two-photon absorption signal and thus capture classically dark two-polariton states. Finally, we discuss cooperative effects among molecules in spectroscopy and possibly in chemistry. When many molecules are involved in forming the polaritons, while the cooperative effects clearly manifest in the dependence of the Rabi splitting on the number of molecules, whether they can show up in chemical reactivity, which is intrinsically local, is an open question. We explore the cooperative nature of the charge migration process in a cavity and show that, unlike spectroscopy, polaritonic charge dynamics is intrinsically local and does not show collective many-molecule effects.

5.
Proc Natl Acad Sci U S A ; 120(30): e2304737120, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37459540

ABSTRACT

We propose a time-frequency resolved spectroscopic technique which employs nonlinear interferometers to study exciton-exciton scattering in molecular aggregates. A higher degree of control over the contributing Liouville pathways is obtained as compared to classical light. We show how the nonlinear response can be isolated from the orders-of-magnitude stronger linear background by either phase matching or polarization filtering. Both arise due to averaging the signal over a large number of noninteracting, randomly oriented molecules. We apply our technique to the Frenkel exciton model which excludes charge separation for the photosystem II reaction center. We show how the sum of the entangled photon frequencies can be used to select two-exciton resonances, while their delay times reveal the single-exciton levels involved in the optical process.

6.
J Am Chem Soc ; 145(27): 14856-14864, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37390450

ABSTRACT

The ultrafast electronic charge dynamics in molecules upon photoionization while the nuclear motions are frozen is known as charge migration. In a theoretical study of the quantum dynamics of photoionized 5-bromo-1-pentene, we show that the charge migration process can be induced and enhanced by placing the molecule in an optical cavity, and can be monitored by time-resolved photoelectron spectroscopy. The collective nature of the polaritonic charge migration process is investigated. We find that, unlike spectroscopy, molecular charge dynamics in a cavity is local and does not show many-molecule collective effects. The same conclusion applies to cavity polaritonic chemistry.

7.
Proc Natl Acad Sci U S A ; 120(6): e2221106120, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36719920
8.
Int J Mol Sci ; 23(22)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36430844

ABSTRACT

Liquid-liquid phase separation underlies the formation of membrane-less organelles inside living cells. The mechanism of this process can be examined using simple aqueous mixtures of two or more solutes, which are able to phase separate at specific concentration thresholds. This work presents the first experimental evidence that mesoscopic changes precede visually detected macroscopic phase separation in aqueous mixtures of two polymers and a single polymer and salt. Dynamic light scattering (DLS) analysis indicates the formation of mesoscopic polymer agglomerates in these systems. These agglomerates increase in size with increasing polymer concentrations prior to visual phase separation. Such mesoscopic changes are paralleled by changes in water structure as evidenced by Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopic analysis of OH-stretch bands. Through OH-stretch band analysis, we obtain quantitative estimates of the relative fractions of four subpopulations of water structures coexisting in aqueous solutions. These estimates indicate that abrupt changes in hydrogen bond arrangement take place at concentrations below the threshold of macroscopic phase separation. We used these experimental observations to develop a model of phase separation in aqueous media.


Subject(s)
Polymers , Water , Water/chemistry , Solutions , Spectroscopy, Fourier Transform Infrared/methods , Dynamic Light Scattering
9.
Phys Rev Lett ; 129(3): 033201, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35905368

ABSTRACT

We solve a model that describes a stimulated conversion between ultracold bosonic atoms and molecules. The reaction is triggered by a linearly time-dependent transition throughout the Feshbach resonance. Our solution predicts a dependence, with a dynamic phase transition, of the reaction efficiency on the transition rate for both atoms-to-molecule pairing and molecular dissociation processes. We find that for the latter process with a linear energy dispersion of atomic modes, the emerging phase can have a thermalized energy distribution of noninteracting bosons with the temperature defined by the rate of the transition. This provides a simple interpretation of the phase transition in terms of the creation of equilibrium Bose-Einstein condensate.

10.
Proc Natl Acad Sci U S A ; 119(22): e2205510119, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35609200

ABSTRACT

SignificanceIn a theoretical study, we present an ultrafast technique for probing time-dependent molecular charge densities. An ultrafast optical pump first brings the molecule into an electronic nonstationary state. This is followed by coherent inelastic scattering of a broadband single-electron probe pulse with a variable delay T, which is detected spectrally. The technique is applied to reveal phase-sensitive background-free coherent electron beating in the conical intersection passage in uracil and reveals the otherwise elusive coherent beating of strongly coupled electrons and nuclei.

11.
J Chem Phys ; 156(9): 094202, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35259880

ABSTRACT

We develop closed expressions for a time-resolved photon counting signal induced by an entangled photon pair in an interferometric spectroscopy setup. Superoperator expressions in Liouville-space are derived that can account for relaxation and dephasing induced by coupling to a bath. Interferometric setups mix matter and light variables non-trivially, which complicates their interpretation. We provide an intuitive modular framework for this setup that simplifies its description. Based on the separation between the detection stage and the light-matter interaction processes, we show that the pair entanglement time and the interferometric time-variables control the observed physics time scale. Only a few processes contribute in the limiting case of small entanglement time with respect to the sample response, and specific contributions can be singled out.

12.
J Phys Chem B ; 125(43): 11785-11786, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34732053
13.
J Chem Phys ; 154(17): 174110, 2021 May 07.
Article in English | MEDLINE | ID: mdl-34241063

ABSTRACT

A Heisenberg uncertainty relation is derived for spatially-gated electric ΔE and magnetic ΔH field fluctuations. The uncertainty increases for small gating sizes, which implies that in confined spaces, the quantum nature of the electromagnetic field must be taken into account. Optimizing the state of light to minimize ΔE at the expense of ΔH and vice versa should be possible. Spatial confinements and quantum fields may alternatively be realized without gating by interaction of the field with a nanostructure. Possible applications include nonlinear spectroscopy of nanostructures and optical cavities and chiral signals.

14.
Phys Rev Lett ; 126(7): 070602, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33666449

ABSTRACT

We explore nonadiabatic quantum phase transitions in an Ising spin chain with a linearly time-dependent transverse field and two different spins per unit cell. Such a spin system passes through critical points with gapless excitations, which support nonadiabatic transitions. Nevertheless, we find that the excitations on one of the chain sublattices are suppressed in the nearly adiabatic regime exponentially. Thus, we reveal a coherent mechanism to induce exponentially large density separation for different quasiparticles.

15.
Proc Natl Acad Sci U S A ; 117(1): 146-151, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31852828

ABSTRACT

The 193-nm photolysis of CH2CHCN illustrates the capability of chirped-pulse Fourier transform millimeter-wave spectroscopy to characterize transition states. We investigate the HCN, HNC photofragments in highly excited vibrational states using both frequency and intensity information. Measured relative intensities of J = 1-0 rotational transition lines yield vibrational-level population distributions (VPD). These VPDs encode the properties of the parent molecule transition state at which the fragment molecule was born. A Poisson distribution formalism, based on the generalized Franck-Condon principle, is proposed as a framework for extracting information about the transition-state structure from the observed VPD. We employ the isotopologue CH2CDCN to disentangle the unimolecular 3-center DCN elimination mechanism from other pathways to HCN. Our experimental results reveal a previously unknown transition state that we tentatively associate with the HCN eliminated via a secondary, bimolecular reaction.

16.
Phys Rev Lett ; 123(12): 123605, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633973

ABSTRACT

We study photon emission by an ensemble of two-level systems, with strong inhomogeneous broadening and coupled to a cavity mode whose frequency has linear time dependence. The analysis shows that, regardless of the distribution of energy level splittings, a sharp phase transition occurs between the weak and strong cooperative emission phases near a critical photonic frequency sweeping rate. The associated scaling exponent is determined. We suggest that this phase transition can be observed in an ensemble of negatively charged NV^{-} centers in diamond interacting with a microwave half-wavelength cavity mode even in the regime of weak coupling and at strong disorder of two-level splittings.

17.
Phys Rev Lett ; 121(19): 190601, 2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30468584

ABSTRACT

We solve a model that has basic features that are desired for quantum annealing computations: entanglement in the ground state, controllable annealing speed, ground state energy separated by a gap during the whole evolution, and a programmable computational problem that is encoded by parameters of the Ising part of the spin Hamiltonian. Our solution enables exact nonperturbative characterization of final nonadiabatic excitations, including a scaling of their number with the annealing rate and the system size. We prove that quantum correlations can accelerate computations and, at the end of the annealing protocol, lead to the perfect Gibbs distribution of all microstates.

18.
Phys Rev Lett ; 120(19): 190402, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29799228

ABSTRACT

We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

19.
Faraday Discuss ; 194: 61-80, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27711851

ABSTRACT

The effect of a dissipative environment on the ultrafast nonadiabatic dynamics at conical intersections is analyzed for a two-state two-mode model chosen to represent the S2(ππ*)-S1(nπ*) conical intersection in pyrazine (the system) which is bilinearly coupled to infinitely many harmonic oscillators in thermal equilibrium (the bath). The system-bath coupling is modeled by the Drude spectral function. The equation of motion for the reduced density matrix of the system is solved numerically exactly with the hierarchy equation of motion method using graphics-processor-unit (GPU) technology. The simulations are valid for arbitrary strength of the system-bath coupling and arbitrary bath memory relaxation time. The present computational studies overcome the limitations of weak system-bath coupling and short memory relaxation time inherent in previous simulations based on multi-level Redfield theory [A. Kühl and W. Domcke, J. Chem. Phys. 2002, 116, 263]. Time evolutions of electronic state populations and time-dependent reduced probability densities of the coupling and tuning modes of the conical intersection have been obtained. It is found that even weak coupling to the bath effectively suppresses the irregular fluctuations of the electronic populations of the isolated two-mode conical intersection. While the population of the upper adiabatic electronic state (S2) is very efficiently quenched by the system-bath coupling, the population of the diabatic ππ* electronic state exhibits long-lived oscillations driven by coherent motion of the tuning mode. Counterintuitively, the coupling to the bath can lead to an enhanced lifetime of the coherence of the tuning mode as a result of effective damping of the highly excited coupling mode, which reduces the strong mode-mode coupling inherent to the conical intersection. The present results extend previous studies of the dissipative dynamics at conical intersections to the nonperturbative regime of system-bath coupling. They pave the way for future first-principles simulations of femtosecond time-resolved four-wave-mixing spectra of chromophores in condensed phases which are nonperturbative in the system dynamics, the system-bath coupling as well as the field-matter coupling.

20.
Chem Sci ; 7(11): 6824-6831, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28616129

ABSTRACT

A spatially non-local response tensor description of linear chiral signals such as circular dichroism is developed. By working directly with the vector potential rather that the electric and magnetic fields, we recast the signals in terms of correlation functions of charge and current densities and avoid the tedious expansion in multipoles.

SELECTION OF CITATIONS
SEARCH DETAIL
...