Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Soft Matter ; 19(28): 5249-5261, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37282665

ABSTRACT

Microcapsules with liquid cores encapsulated by thin membranes have many applications in science, medicine and industry. In this paper, we design a suspension of microcapsules which can flow and deform like red blood cells (RBCs), as a valuable tool to investigate microhaemodynamics. A reconfigurable and easy-to-assemble 3D nested glass capillary device is used to robustly fabricate water-oil-water double emulsions which are then converted into spherical microcapsules with hyperelastic membranes by cross-linking the polydimethylsiloxane (PDMS) layer coating the droplets. The resulting capsules are monodisperse to within 1% and can be made in a wide range of size and membrane thickness. We use osmosis to deflate by 36% initially spherical capsules of diameter 350 µm and a membrane thickness of 4% of their radius. Hence, we can match the reduced volume of RBCs but not their biconcave shape, since our capsules adopt a buckled shape. We compare the propagation of initially spherical and deflated capsules under constant volumetric flow in cylindrical capillaries of different confinements. We find that only deflated capsules deform broadly like RBCs over a similar range of capillary numbers Ca - the ratio of viscous to elastic forces. Similarly to the RBCs, the microcapsules transition from a symmetric 'parachute' to an asymmetric 'slipper'-like shape as Ca increases within the physiological range, demonstrating intriguing confinement-dependent dynamics. In addition to biomimetic RBC properties, high-throughput fabrication of tunable ultra-soft microcapsules could be further functionalized and find applications in other areas of science and engineering.


Subject(s)
Biomimetics , Erythrocytes , Capsules , Water , Dimethylpolysiloxanes , Emulsions
2.
Interface Focus ; 12(6): 20220037, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36325194

ABSTRACT

The dynamics of blood flow in the smallest vessels and passages of the human body, where the cellular character of blood becomes prominent, plays a dominant role in the transport and exchange of solutes. Recent studies have revealed that the microhaemodynamics of a vascular network is underpinned by its interconnected structure, and certain structural alterations such as capillary dilation and blockage can substantially change blood flow patterns. However, for extravascular media with disordered microstructure (e.g. the porous intervillous space in the placenta), it remains unclear how the medium's structure affects the haemodynamics. Here, we simulate cellular blood flow in simple models of canonical porous media representative of extravascular biological tissue, with corroborative microfluidic experiments performed for validation purposes. For the media considered here, we observe three main effects: first, the relative apparent viscosity of blood increases with the structural disorder of the medium; second, the presence of red blood cells (RBCs) dynamically alters the flow distribution in the medium; third, symmetry breaking introduced by moderate structural disorder can promote more homogeneous distribution of RBCs. Our findings contribute to a better understanding of the cell-scale haemodynamics that mediates the relationship linking the function of certain biological tissues to their microstructure.

3.
Proc Math Phys Eng Sci ; 478(2262): 20220032, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35756879

ABSTRACT

We investigate the transport of a solute past isolated sinks in a bounded domain when advection is dominant over diffusion, evaluating the effectiveness of homogenization approximations when sinks are distributed uniformly randomly in space. Corrections to such approximations can be non-local, non-smooth and non-Gaussian, depending on the physical parameters (a Péclet number Pe, assumed large, and a Damköhler number Da) and the compactness of the sinks. In one spatial dimension, solute distributions develop a staircase structure for large Pe , with corrections being better described with credible intervals than with traditional moments. In two and three dimensions, solute distributions are near-singular at each sink (and regularized by sink size), but their moments can be smooth as a result of ensemble averaging over variable sink locations. We approximate corrections to a homogenization approximation using a moment-expansion method, replacing the Green's function by its free-space form, and test predictions against simulation. We show how, in two or three dimensions, the leading-order impact of disorder can be captured in a homogenization approximation for the ensemble mean concentration through a modification to Da that grows with diminishing sink size.

5.
Interface Focus ; 9(5): 20190021, 2019 Oct 06.
Article in English | MEDLINE | ID: mdl-31485311

ABSTRACT

The primary exchange units in the human placenta are terminal villi, in which fetal capillary networks are surrounded by a thin layer of villous tissue, separating fetal from maternal blood. To understand how the complex spatial structure of villi influences their function, we use an image-based theoretical model to study the effect of tissue metabolism on the transport of solutes from maternal blood into the fetal circulation. For solute that is taken up under first-order kinetics, we show that the transition between flow-limited and diffusion-limited transport depends on two new dimensionless parameters defined in terms of key geometric quantities, with strong solute uptake promoting flow-limited transport conditions. We present a simple algebraic approximation for solute uptake rate as a function of flow conditions, metabolic rate and villous geometry. For oxygen, accounting for nonlinear kinetics using physiological parameter values, our model predicts that villous metabolism does not significantly impact oxygen transfer to fetal blood, although the partitioning of fluxes between the villous tissue and the capillary network depends strongly on the flow regime.

6.
Sci Adv ; 5(4): eaav6326, 2019 04.
Article in English | MEDLINE | ID: mdl-31001587

ABSTRACT

Across mammalian species, solute exchange takes place in complex microvascular networks. In the human placenta, the primary exchange units are terminal villi that contain disordered networks of fetal capillaries and are surrounded externally by maternal blood. We show how the irregular internal structure of a terminal villus determines its exchange capacity for diverse solutes. Distilling geometric features into three parameters, obtained from image analysis and computational fluid dynamics, we capture archetypal features of the structure-function relationship of terminal villi using a simple algebraic approximation, revealing transitions between flow- and diffusion-limited transport at vessel and network levels. Our theory accommodates countercurrent effects, incorporates nonlinear blood rheology, and offers an efficient method for testing network robustness. Our results show how physical estimates of solute transport, based on carefully defined geometrical statistics, provide a viable method for linking placental structure and function and offer a framework for assessing transport in other microvascular systems.


Subject(s)
Microvessels/metabolism , Models, Biological , Placenta/metabolism , Diffusion , Female , Finite Element Analysis , Humans , Oxygen/metabolism , Pregnancy
7.
Annu Rev Fluid Mech ; 51: 25-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-38410641

ABSTRACT

The placenta is a multi-functional organ that exchanges blood gases and nutrients between a mother and her developing fetus. In humans, fetal blood flows through intricate networks of vessels confined within villous trees, the branches of which are bathed in pools of maternal blood. Fluid mechanics and transport processes play a central role in understanding how these elaborate structures contribute to the function of the placenta, and how their disorganization may lead to disease. Recent advances in imaging and computation have spurred significant advances in simulations of fetal and maternal flows within the placenta, across a range of lengthscales. Models describe jets of maternal blood emerging from spiral arteries into a disordered and deformable porous medium, and solute uptake by fetal blood flowing through elaborate three-dimensional capillary networks. We survey recent developments and emerging challenges in modeling flow and transport in this complex organ.

8.
Eur Respir J ; 51(5)2018 05.
Article in English | MEDLINE | ID: mdl-29700102

ABSTRACT

Bronchial thermoplasty is a treatment for asthma. It is currently unclear whether its histopathological impact is sufficiently explained by the proportion of airway wall that is exposed to temperatures necessary to affect cell survival.Airway smooth muscle and bronchial epithelial cells were exposed to media (37-70°C) for 10 s to mimic thermoplasty. In silico we developed a mathematical model of airway heat distribution post-thermoplasty. In vivo we determined airway smooth muscle mass and epithelial integrity pre- and post-thermoplasty in 14 patients with severe asthma.In vitro airway smooth muscle and epithelial cell number decreased significantly following the addition of media heated to ≥65°C. In silico simulations showed a heterogeneous heat distribution that was amplified in larger airways, with <10% of the airway wall heated to >60°C in airways with an inner radius of ∼4 mm. In vivo at 6 weeks post-thermoplasty, there was an improvement in asthma control (measured via Asthma Control Questionnaire-6; mean difference 0.7, 95% CI 0.1-1.3; p=0.03), airway smooth muscle mass decreased (absolute median reduction 5%, interquartile range (IQR) 0-10; p=0.03) and epithelial integrity increased (14%, IQR 6-29; p=0.007). Neither of the latter two outcomes was related to improved asthma control.Integrated in vitro and in silico modelling suggest that the reduction in airway smooth muscle post-thermoplasty cannot be fully explained by acute heating, and nor did this reduction confer a greater improvement in asthma control.


Subject(s)
Asthma/therapy , Bronchial Thermoplasty/methods , Epithelial Cells/metabolism , Models, Biological , Muscle, Smooth/pathology , Adult , Aged , Airway Remodeling , Apoptosis , Bronchial Thermoplasty/adverse effects , Bronchoscopy , Computer Simulation , Female , Humans , Male , Middle Aged
9.
J Physiol ; 596(23): 5523-5534, 2018 12.
Article in English | MEDLINE | ID: mdl-29377190

ABSTRACT

The placenta is crucial for life. It is an ephemeral but complex organ acting as the barrier interface between maternal and fetal circulations, providing exchange of gases, nutrients, hormones, waste products and immunoglobulins. Many gaps exist in our understanding of the detailed placental structure and function, particularly in relation to oxygen handling and transfer in healthy and pathological states in utero. Measurements to understand oxygen transfer in vivo in the human are limited, with no general agreement on the most appropriate methods. An invasive method for measuring partial pressure of oxygen in the intervillous space through needle electrode insertion at the time of Caesarean sections has been reported. This allows for direct measurements in vivo whilst maintaining near normal placental conditions; however, there are practical and ethical implications in using this method for determination of placental oxygenation. Furthermore, oxygen levels are likely to be highly heterogeneous within the placenta. Emerging non-invasive techniques, such as MRI, and ex vivo research are capable of enhancing and improving current imaging methodology for placental villous structure and increase the precision of oxygen measurement within placental compartments. These techniques, in combination with mathematical modelling, have stimulated novel cross-disciplinary approaches that could advance our understanding of placental oxygenation and its metabolism in normal and pathological pregnancies, improving clinical treatment options and ultimately outcomes for the patient.


Subject(s)
Oxygen/metabolism , Placenta/metabolism , Animals , Female , Gestational Age , Humans , Pregnancy
10.
PLoS One ; 11(10): e0165369, 2016.
Article in English | MEDLINE | ID: mdl-27788214

ABSTRACT

During pregnancy, oxygen diffuses from maternal to fetal blood through villous trees in the placenta. In this paper, we simulate blood flow and oxygen transfer in feto-placental capillaries by converting three-dimensional representations of villous and capillary surfaces, reconstructed from confocal laser scanning microscopy, to finite-element meshes, and calculating values of vascular flow resistance and total oxygen transfer. The relationship between the total oxygen transfer rate and the pressure drop through the capillary is shown to be captured across a wide range of pressure drops by physical scaling laws and an upper bound on the oxygen transfer rate. A regression equation is introduced that can be used to estimate the oxygen transfer in a capillary using the vascular resistance. Two techniques for quantifying the effects of statistical variability, experimental uncertainty and pathological placental structure on the calculated properties are then introduced. First, scaling arguments are used to quantify the sensitivity of the model to uncertainties in the geometry and the parameters. Second, the effects of localized dilations in fetal capillaries are investigated using an idealized axisymmetric model, to quantify the possible effect of pathological placental structure on oxygen transfer. The model predicts how, for a fixed pressure drop through a capillary, oxygen transfer is maximized by an optimal width of the dilation. The results could explain the prevalence of fetal hypoxia in cases of delayed villous maturation, a pathology characterized by a lack of the vasculo-syncytial membranes often seen in conjunction with localized capillary dilations.


Subject(s)
Blood Circulation , Capillaries/physiology , Fetus/blood supply , Imaging, Three-Dimensional , Models, Biological , Oxygen/metabolism , Placenta/blood supply , Capillaries/metabolism , Chorionic Villi/embryology , Diffusion , Female , Humans , Pregnancy
11.
PLoS One ; 9(3): e90162, 2014.
Article in English | MEDLINE | ID: mdl-24632688

ABSTRACT

Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM) mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.


Subject(s)
Airway Remodeling/physiology , Asthma/immunology , Models, Theoretical , Muscle, Smooth/immunology , Humans , Inflammation/metabolism
12.
Philos Trans A Math Phys Eng Sci ; 369(1954): 4162-82, 2011 Nov 13.
Article in English | MEDLINE | ID: mdl-21969671

ABSTRACT

The placenta is an essential component of the life-support system for the developing foetus, enabling nutrients and waste to be exchanged between the foetal and maternal circulations. Maternal blood flows between the densely packed branches of villous trees, within which are foetal vessels. Here, we explore some of the challenges in modelling maternal haemodynamic transport using homogenization approaches. We first show how two measures can be used to estimate the minimum distance over which the distribution of villous branches appears statistically homogeneous. We then analyse a simplified model problem (solute transport by a unidirectional flow past a distribution of point sinks) to assess the accuracy of homogenization approximations as a function of governing parameters (Péclet and Damköhler numbers) and the statistical properties of the sink distribution. The difference between the leading-order homogenization approximation and the exact solute distribution is characterized by large spatial gradients at the scale of individual villi and substantial fluctuations that can be correlated over lengthscales comparable to the whole domain. This study highlights the importance of quantifying errors owing to spatial disorder in multi-scale approximations of physiological systems.


Subject(s)
Hemodynamics , Placenta/physiology , Placental Circulation/physiology , Biophysics/methods , Computer Simulation , Diffusion , Female , Humans , Maternal-Fetal Exchange , Models, Anatomic , Models, Biological , Models, Statistical , Models, Theoretical , Pregnancy , Regional Blood Flow/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...