Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(25): 11162-11174, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857410

ABSTRACT

Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.


Subject(s)
Alkanesulfonic Acids , Charcoal , Fluorocarbons , Charcoal/chemistry , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Metals, Alkaline Earth/chemistry , Adsorption , Alkalies/chemistry , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...