Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 79(8): 4848-58, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15795270

ABSTRACT

The replication of positive-strand RNA viral genomes involves various cis-acting RNA sequences. Generally, regulatory RNA sequences are present at or near genomic termini; however, internal replication elements (IREs) also exist. Here we report the structural and functional characterization of an IRE present in the readthrough portion of the p92 polymerase gene of Tomato bushy stunt virus. Analysis of this element in the context of a noncoding defective interfering RNA revealed a functional core structure composed of two noncontiguous segments of sequence that interact with each other to form an extended helical conformation. IRE activity required maintenance of several base-paired sections as well as two distinct structural features: (i) a short, highly conserved segment that can potentially form two different and mutually exclusive structures and (ii) an internal loop that contains a critical CC mismatch. The IRE was also shown to play an essential role within the context of the viral genome. In vivo analysis with novel RNA-based temperature-sensitive genomic mutants and translationally active subgenomic viral replicons revealed the following about the IRE: (i) it is active in the positive strand, (ii) it is dispensable late in the viral RNA replication process, and (iii) it is functionally inhibited by active translation over its sequence. Together, these results suggest that IRE activity is required in the cytosol at an early step in the viral replication process, such as template recruitment and/or replicase complex assembly.


Subject(s)
Genome, Viral , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Tombusvirus/enzymology , Tombusvirus/genetics , Virus Replication/genetics , Amaranthaceae/virology , Base Sequence , Codon, Terminator/genetics , Molecular Sequence Data , Mutagenesis , Nucleic Acid Conformation , Plant Diseases/virology , Polymerase Chain Reaction , Protein Biosynthesis , RNA Interference , RNA, Viral/chemistry , Transcription, Genetic
2.
Virology ; 332(2): 640-9, 2005 Feb 20.
Article in English | MEDLINE | ID: mdl-15680429

ABSTRACT

Satellite (sat) RNAs are parasitic sub-viral RNA replicons found associated with certain positive-strand RNA viruses. Typical sat RNAs, such as those associated with members of the genus Tombusvirus, share little or no sequence identity with their helper virus genomes. Here, we have investigated a tombusvirus sat RNA and determined that it contains two functionally-relevant higher-order RNA domains, a T-shaped domain and a downstream domain, that are similar to elements shown previously to be present in the 5' untranslated regions (UTRs) of tombusvirus genomes. Although the two sat RNA domains showed only limited sequence identity with their viral counterparts, they were able to adopt comparably-folded RNA secondary structures. Interestingly, the relative spacing between the domains in the viral and satellite contexts was notably different. In the viral 5' UTR, the two domains are adjacent and separated by a small hairpin, however, in the sat RNA they are separated by a 137-nt long segment. Despite this distal modular arrangement, the two domains were found to be united spatially in the sat RNA through the formation of an RNA-RNA bridge. This co-localization facilitated an important inter-domain interaction and was essential for efficient helper-mediated sat RNA accumulation in protoplasts. These results indicate that the tombusvirus sat RNA and helper genome contain structurally and functionally equivalent RNA domains. It is proposed that the limited sequence identity observed between these corresponding higher-order RNA structures is related to a strategy that reduces the induction of gene silencing, which presumably would be detrimental to both viral and sat RNA replicons.


Subject(s)
RNA, Satellite/genetics , Tombusvirus/genetics , Base Sequence , Genome, Viral , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Satellite/chemistry , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...