Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(8): e2021GL097107, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35860460

ABSTRACT

We study the spatial structure of a polarization jet/Sub-Auroral Ion Drift (PJ/SAID) based on data from the NorSat-1 and Swarm satellites during a geomagnetic storm. Observations of plasma parameters inside the PJ/SAID are obtained with NorSat-1 using a system of Langmuir probes with a nominal sampling rate of up to 1 kHz, which allowed measurements with such a high temporal resolution for the first time. A comparative analysis of plasma parameters and electron density spectra inside PJ according to the data from both satellites is presented. Our results show that fluctuations of plasma parameters inside the PJ increase at all scales with increasing geomagnetic activity. Small-scale irregularities in the PJ are measured in situ down to hundreds of meters. The role of large-scale effects in the PJ increases in comparison with the small-scale ones during high geomagnetic activity. The PJ consists of structures ∼0.2° latitude in size within which small-scale irregularities are present.

2.
Sci Rep ; 10(1): 6363, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32286480

ABSTRACT

The influence of an auroral substorm on the total electron content (TEC) jumps and cycle slips on Global Positioning System (GPS) at high-latitudes is studied. For the first time, optical data from the all-sky imager, as well as interplanetary magnetic field and magnetometer data are used to complete the analysis of the slips occurrence and to monitor the substorm evolution. Two types of slips are considered: (i) instrumental slips including losses in the measured phase of the GPS signal and (ii) sharp TEC variations (TEC jumps) It is demonstrated that the jumps in TEC determined from the GPS signals are mainly related to the auroral particle precipitation that normally occurs during geomagnetic substorms in the polar ionosphere. The GPS frequency [Formula: see text] is consistently subject to more slips than frequency [Formula: see text] both for quiet and disturbed conditions. The probability of TEC jumps is higher than for cycle slips in phase at frequencies [Formula: see text] and [Formula: see text]. The maximum of TEC jumps is observed during the recovery phase of the auroral substorm. Our findings are based on a data set obtained for a particular event. A generalization of the obtained numerical estimates to other events requires additional research and further analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...