Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Front Neurosci ; 18: 1329411, 2024.
Article in English | MEDLINE | ID: mdl-38737097

ABSTRACT

Myoelectric prostheses have recently shown significant promise for restoring hand function in individuals with upper limb loss or deficiencies, driven by advances in machine learning and increasingly accessible bioelectrical signal acquisition devices. Here, we first introduce and validate a novel experimental paradigm using a virtual reality headset equipped with hand-tracking capabilities to facilitate the recordings of synchronized EMG signals and hand pose estimation. Using both the phasic and tonic EMG components of data acquired through the proposed paradigm, we compare hand gesture classification pipelines based on standard signal processing features, convolutional neural networks, and covariance matrices with Riemannian geometry computed from raw or xDAWN-filtered EMG signals. We demonstrate the performance of the latter for gesture classification using EMG signals. We further hypothesize that introducing physiological knowledge in machine learning models will enhance their performances, leading to better myoelectric prosthesis control. We demonstrate the potential of this approach by using the neurophysiological integration of the "move command" to better separate the phasic and tonic components of the EMG signals, significantly improving the performance of sustained posture recognition. These results pave the way for the development of new cutting-edge machine learning techniques, likely refined by neurophysiology, that will further improve the decoding of real-time natural gestures and, ultimately, the control of myoelectric prostheses.

2.
Sci Rep ; 14(1): 10907, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740808

ABSTRACT

In this study, we investigated the electrical brain responses in a high-density EEG array (64 electrodes) elicited specifically by the word memory cue in the Think/No-Think paradigm in 46 participants. In a first step, we corroborated previous findings demonstrating sustained and reduced brain electrical frontal and parietal late potentials elicited by memory cues following the No-Think (NT) instructions as compared to the Think (T) instructions. The topographical analysis revealed that such reduction was significant 1000 ms after memory cue onset and that it was long-lasting for 1000 ms. In a second step, we estimated the underlying brain generators with a distributed method (swLORETA) which does not preconceive any localization in the gray matter. This method revealed that the cognitive process related to the inhibition of memory retrieval involved classical motoric cerebral structures with the left primary motor cortex (M1, BA4), thalamus, and premotor cortex (BA6). Also, the right frontal-polar cortex was involved in the T condition which we interpreted as an indication of its role in the maintaining of a cognitive set during remembering, by the selection of one cognitive mode of processing, Think, over the other, No-Think, across extended periods of time, as it might be necessary for the successful execution of the Think/No-Think task.


Subject(s)
Electroencephalography , Memory , Motor Cortex , Humans , Male , Female , Adult , Memory/physiology , Motor Cortex/physiology , Young Adult , Brain Mapping , Thinking/physiology , Brain/physiology , Evoked Potentials/physiology
4.
Front Psychol ; 14: 1199448, 2023.
Article in English | MEDLINE | ID: mdl-37583601

ABSTRACT

Objective: To investigate kinematic and muscle activity differences during the sleep-push movement in elite field hockey players. We hypothesized that players with specialized sleep-push movement training (specialists) would possess a lower center of mass (CoM) and enhanced reproducibility of muscle activations during the movement, compared to players without explicit movement training (non-specialists). Methods: Ten field hockey players of the Belgian national field hockey team performed the sleep-push movement (5 specialists and 5 non-specialists). Muscle activity and kinematic data were recorded using EMG to evaluate the reproducibility of muscle activations by cross-correlation analysis and power spectral features across the movement, while a motion capture system was used to assess kinematics. Results: Compared to non-specialists, specialists had significantly (p < 0.05) increased stick velocity (9.17 ± 1.28 m/s versus 6.98 ± 0.97 m/s) and lower CoM height (141 ± 52 mm versus 296 ± 64 mm), during the second part of the shot. Specialists also showed a significant (p < 0.05) lower power spectrum in the activity of the upper limb muscles before the shot. Superimposition of the auto crosscorrelation results demonstrated a high degree of reproducibility in specialists' muscle activations. Conclusion: Sleep-push movements realized by elite players who are specialists in the sleep-push movement presented significant kinematics and muscular activation differences when compared to the sleep-push movements realized by elite players who were not specialists in such movement. Characterization of the specific movement and the related high-level performer's muscular strategies offers the possibility of translating sport science findings into functional training with concrete applications for coaches, players, and other key stakeholders for the continued development of the field.

5.
Sci Rep ; 13(1): 9489, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37303002

ABSTRACT

Electroencephalography (EEG) can detect changes in cerebral activity during spaceflight. This study evaluates the effect of spaceflight on brain networks through analysis of the Default Mode Network (DMN)'s alpha frequency band power and functional connectivity (FC), and the persistence of these changes. Five astronauts' resting state EEGs under three conditions were analyzed (pre-flight, in-flight, and post-flight). DMN's alpha band power and FC were computed using eLORETA and phase-locking value. Eyes-opened (EO) and eyes-closed (EC) conditions were differentiated. We found a DMN alpha band power reduction during in-flight (EC: p < 0.001; EO: p < 0.05) and post-flight (EC: p < 0.001; EO: p < 0.01) when compared to pre-flight condition. FC strength decreased during in-flight (EC: p < 0.01; EO: p < 0.01) and post-flight (EC: ns; EO: p < 0.01) compared to pre-flight condition. The DMN alpha band power and FC strength reduction persisted until 20 days after landing. Spaceflight caused electrocerebral alterations that persisted after return to earth. Periodic assessment by EEG-derived DMN analysis has the potential to become a neurophysiologic marker of cerebral functional integrity during exploration missions to space.


Subject(s)
Space Flight , Humans , Astronauts , Eye , Brain , Electroencephalography
6.
Front Syst Neurosci ; 17: 1180627, 2023.
Article in English | MEDLINE | ID: mdl-37304152

ABSTRACT

The network formed by the brainstem, cerebellum, and hippocampus occupies a central position to achieve navigation. Multiple physiological functions are implicated in this complex behavior. Among these, control of the eye-head and body movements is crucial. The gaze-holding system realized by the brainstem oculomotor neural integrator (ONI) situated in the nucleus prepositus hypoglossi and fine-tuned by the contribution of different regions of the cerebellum assumes the stability of the image on the fovea. This function helps in the recognition of environmental targets and defining appropriate navigational pathways further elaborated by the entorhinal cortex and hippocampus. In this context, an enigmatic brainstem area situated in front of the ONI, the nucleus incertus (NIC), is implicated in the dynamics of brainstem-hippocampus theta oscillation and contains a group of neurons projecting to the cerebellum. These neurons are characterized by burst tonic behavior similar to the burst tonic neurons in the ONI that convey eye velocity-position signals to the cerebellar flocculus. Faced with these forgotten cerebellar projections of the NIC, the present perspective discusses the possibility that, in addition to the already described pathways linking the cerebellum and the hippocampus via the medial septum, these NIC signals related to the vestibulo-ocular reflex and gaze holding could participate in the hippocampal control of navigation.

8.
PLoS One ; 18(2): e0280822, 2023.
Article in English | MEDLINE | ID: mdl-36800392

ABSTRACT

The cognitive performance of the crew has a major impact on mission safety and success in space flight. Monitoring of cognitive performance during long-duration space flight therefore is of paramount importance and can be performed using compact state-of-the-art mobile EEG. However, signal quality of EEG may be compromised due to the vicinity to various electronic devices and constant movements. We compare noise characteristics between in-flight extraterrestrial microgravity and ground-level terrestrial electroencephalography (EEG) recordings. EEG data recordings from either aboard International Space Station (ISS) or on earth's surface, utilizing three EEG amplifiers and two electrode types, were compared. In-flight recordings showed noise level of an order of magnitude lower when compared to pre- and post-flight ground-level recordings with the same EEG system. Noise levels between ground-level recordings with actively shielded cables, and in-flight recordings without shielded cables, were similar. Furthermore, noise level characteristics of shielded ground-level EEG recordings, using wet and dry electrodes, and in-flight EEG recordings were similar. Actively shielded mobile dry EEG systems will support neuroscientific research and neurocognitive monitoring during spaceflight, especially during long-duration space missions.


Subject(s)
Space Flight , Weightlessness , Electroencephalography , Electrodes
9.
JMIR Res Protoc ; 12: e43870, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36729587

ABSTRACT

BACKGROUND: Accidental awareness during general anesthesia (AAGA) is defined as an unexpected awareness of the patient during general anesthesia. This phenomenon occurs in 1%-2% of high-risk practice patients and can cause physical suffering and psychological after-effects, called posttraumatic stress disorder. In fact, no monitoring techniques are satisfactory enough to effectively prevent AAGA; therefore, new alternatives are needed. Because the first reflex for a patient during an AAGA is to move, but cannot do so because of the neuromuscular blockers, we believe that it is possible to design a brain-computer interface (BCI) based on the detection of movement intention to warn the anesthetist. To do this, we propose to describe and detect the changes in terms of motor cortex oscillations during general anesthesia with propofol, while a median nerve stimulation is performed. We believe that our results could enable the design of a BCI based on median nerve stimulation, which could prevent AAGA. OBJECTIVE: To our knowledge, no published studies have investigated the detection of electroencephalographic (EEG) patterns in relation to peripheral nerve stimulation over the sensorimotor cortex during general anesthesia. The main objective of this study is to describe the changes in terms of event-related desynchronization and event-related synchronization modulations, in the EEG signal over the motor cortex during general anesthesia with propofol while a median nerve stimulation is performed. METHODS: STIM-MOTANA is an interventional and prospective study conducted with patients scheduled for surgery under general anesthesia, involving EEG measurements and median nerve stimulation at two different times: (1) when the patient is awake before surgery (2) and under general anesthesia. A total of 30 patients will receive surgery under complete intravenous anesthesia with a target-controlled infusion pump of propofol. RESULTS: The changes in event-related desynchronization and event-related synchronization during median nerve stimulation according to the various propofol concentrations for 30 patients will be analyzed. In addition, we will apply 4 different offline machine learning algorithms to detect the median nerve stimulation at the cerebral level. Recruitment began in December 2022. Data collection is expected to conclude in June 2024. CONCLUSIONS: STIM-MOTANA will be the first protocol to investigate median nerve stimulation cerebral motor effect during general anesthesia for the detection of intraoperative awareness. Based on strong practical and theoretical scientific reasoning from our previous studies, our innovative median nerve stimulation-based BCI would provide a way to detect intraoperative awareness during general anesthesia. TRIAL REGISTRATION: Clinicaltrials.gov NCT05272202; https://clinicaltrials.gov/ct2/show/NCT05272202. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/43870.

10.
Front Psychol ; 13: 792872, 2022.
Article in English | MEDLINE | ID: mdl-35310269

ABSTRACT

The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta-theta-alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.

11.
Eur J Neurosci ; 56(9): 5547-5563, 2022 11.
Article in English | MEDLINE | ID: mdl-35141975

ABSTRACT

Alzheimer's disease is histopathologically well defined by the presence of amyloid deposits and tau-related neurofibrillary tangles in crucial regions of the brain. Interest is growing in revealing and determining possible pathological markers also in the cerebellum as its involvement in cognitive functions is now well supported. Despite the central position of the Purkinje cell in the cerebellum, its electrophysiological behaviour in mouse models of Alzheimer's disease is scarce in the literature. Our first aim was here to focus on the electrophysiological behaviour of the cerebellum in awake mouse model of Alzheimer's disease (APPswe/PSEN1dE9) and the related performance on the water-maze test classically used in behavioural studies. We found prevalent signs of electrophysiological alterations in both Purkinje cells and deep cerebellar nuclei neurons which might explain the behavioural deficits reported during the water-maze test. The alterations of neurons firing were accompanied by a dual (~16 and ~228 Hz) local field potential's oscillation in the Purkinje cell layer of Alzheimer's disease mice which was concomitant to an important increase of both the simple and the complex spikes. In addition, ß-amyloid deposits were present in the molecular layer of the cerebellum. These results highlight the importance of the output firing modification of the AD cerebellum that may indirectly impact the activity of its subcortical and cortical targets.


Subject(s)
Alzheimer Disease , Purkinje Cells , Animals , Mice , Purkinje Cells/physiology , Alzheimer Disease/pathology , Plaque, Amyloid , Cerebellum/physiology , Neurons , Disease Models, Animal , Water , Electrophysiology
12.
PLoS One ; 17(1): e0262417, 2022.
Article in English | MEDLINE | ID: mdl-35030232

ABSTRACT

OBJECTIVE: Different visual stimuli are classically used for triggering visual evoked potentials comprising well-defined components linked to the content of the displayed image. These evoked components result from the average of ongoing EEG signals in which additive and oscillatory mechanisms contribute to the component morphology. The evoked related potentials often resulted from a mixed situation (power variation and phase-locking) making basic and clinical interpretations difficult. Besides, the grand average methodology produced artificial constructs that do not reflect individual peculiarities. This motivated new approaches based on single-trial analysis as recently used in the brain-computer interface field. APPROACH: We hypothesize that EEG signals may include specific information about the visual features of the displayed image and that such distinctive traits can be identified by state-of-the-art classification algorithms based on Riemannian geometry. The same classification algorithms are also applied to the dipole sources estimated by sLORETA. MAIN RESULTS AND SIGNIFICANCE: We show that our classification pipeline can effectively discriminate between the display of different visual items (Checkerboard versus 3D navigational image) in single EEG trials throughout multiple subjects. The present methodology reaches a single-trial classification accuracy of about 84% and 93% for inter-subject and intra-subject classification respectively using surface EEG. Interestingly, we note that the classification algorithms trained on sLORETA sources estimation fail to generalize among multiple subjects (63%), which may be due to either the average head model used by sLORETA or the subsequent spatial filtering failing to extract discriminative information, but reach an intra-subject classification accuracy of 82%.


Subject(s)
Electroencephalography/methods , Evoked Potentials, Visual/physiology , Image Processing, Computer-Assisted/methods , Adult , Algorithms , Brain-Computer Interfaces , Female , Healthy Volunteers , Humans , Male , Signal Processing, Computer-Assisted , Visual Perception/physiology
13.
Sci Rep ; 11(1): 9590, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953237

ABSTRACT

Although human adaptation to spaceflight has been studied for decades, little is known about its long-term effects on brain and behavior. The present study investigated visuospatial performance and associated electrophysiological responses in astronauts before, during, and after an approximately half-year long mission to the International Space Station. Here we report findings demonstrating that cognitive performance can suffer marked decrements during spaceflight. Astronauts were slower and more error-prone on orbit than on Earth, while event-related brain potentials reflected diminished attentional resources. Our study is the first to provide evidence for impaired performance during both the initial (~ 8 days) and later (~ 50 days) stages of spaceflight, without any signs of adaptation. Results indicate restricted adaptability to spaceflight conditions and calls for new research prior to deep space explorations.

14.
Eur J Neurosci ; 53(10): 3447-3462, 2021 05.
Article in English | MEDLINE | ID: mdl-33759261

ABSTRACT

Previous studies showed reduced activity of the anterior cingulate cortex (ACC) and supplementary motor area during inhibition in children with attention-deficit/hyperactivity disorder (ADHD). This study aimed to investigate deep brain generators underlying alterations of evoked potential components triggered by visual GO/NoGO tasks in children with ADHD compared with typically developing children (TDC). Standardized weighted low-resolution electromagnetic tomography (swLORETA) source analysis showed that lower GO-P3 component in children with ADHD was explained not only by a reduced contribution of the frontal areas but also by a stronger contribution of the anterior part of the caudate nucleus in these children compared with TDC. While the reduction of the NoGO-P3 component in children with ADHD was essentially explained by a reduced contribution of the dorsal ACC, the higher NoGO-P2 amplitude in these children was concomitant to the reduced contribution of the dorsolateral prefrontal cortex, the insula, and the cerebellum. These data corroborate previous findings showed by fMRI studies and offered insight relative to the precise time-related contribution of the caudate nucleus and the cerebellum during the automatic feature of inhibition processes in children with ADHD. These results were discussed regarding the involvement of the fronto-basal ganglia and fronto-cerebellum networks in inhibition and attention alterations in ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Attention , Cerebellum , Child , Evoked Potentials , Humans , Inhibition, Psychological
15.
Sci Rep ; 11(1): 3123, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542338

ABSTRACT

Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Somatosensory Cortex/physiology , Transcranial Direct Current Stimulation/methods , Animals , Biomarkers/metabolism , Electrodes , Gene Expression , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Male , Mice , Mice, Inbred C57BL , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Somatosensory Cortex/anatomy & histology , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism
16.
Eur J Neurosci ; 53(4): 1207-1224, 2021 02.
Article in English | MEDLINE | ID: mdl-33169431

ABSTRACT

Event-related potentials (ERP) studies report alterations in the ongoing visuo-attentional processes in children with attention-deficit/hyperactivity disorder (ADHD). We hypothesized that the neural generators progressively recruited after a cue stimulus imply executive-related areas well before engagement in executive processing in children with ADHD compared to typically developed children (TDC). We computed source localization (swLORETA) of the ERP and ERSP evoked by the Cue stimulus during a visual Cue-Go/Nogo paradigm in 15 ADHD compared to 16 TDC. A significant difference in N200/P200 amplitude over the right centro-frontal regions was observed between ADHD and TDC, supported by a stronger contribution of the left visuo-motor coordination area, premotor cortex, and prefrontal cortex in ADHD. In addition, we recorded a greater beta power spectrum in ADHD during the 80-230 ms interval, which was explained by increased activity in occipito-parieto-central areas and lower activity in the left supramarginal gyrus and prefrontal areas in ADHD. Successive analysis of the ERP generators (0-500 ms with successive periods of 50 ms) revealed significant differences beginning at 50 ms, with higher activity in the ventral anterior cingulate cortex, premotor cortex, and fusiform gyrus, and ending at 400-500 ms with higher activity of the dorsolateral prefrontal cortex and lower activity of the posterior cingulate cortex in ADHD compared to TDC. The areas contributing to ERP in ADHD and TDC differ from the early steps of visuo-attentional processing and reveal an overinvestment of the executive networks interfering with the activity of the dorsal attention network in children with ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Cognition , Cues , Evoked Potentials , Humans , Visual Perception
17.
Front Neurosci ; 14: 588357, 2020.
Article in English | MEDLINE | ID: mdl-33424535

ABSTRACT

Interactions between two brains constitute the essence of social communication. Daily movements are commonly executed during social interactions and are determined by different mental states that may express different positive or negative behavioral intent. In this context, the effective recognition of festive or violent intent before the action execution remains crucial for survival. Here, we hypothesize that the EEG signals contain the distinctive features characterizing movement intent already expressed before movement execution and that such distinctive information can be identified by state-of-the-art classification algorithms based on Riemannian geometry. We demonstrated for the first time that a classifier based on covariance matrices and Riemannian geometry can effectively discriminate between neutral, festive, and violent mental states only on the basis of non-invasive EEG signals in both the actor and observer participants. These results pave the way for new electrophysiological discrimination of mental states based on non-invasive EEG recordings and cutting-edge machine learning techniques.

19.
NPJ Microgravity ; 5: 10, 2019.
Article in English | MEDLINE | ID: mdl-31069253

ABSTRACT

Adequate sleep quantity and quality is required to maintain vigilance, cognitive and learning processes. A decrease of sleep quantity preflight and on the International Space Station (ISS) has been reported. Recent counter-measures have been implemented to better regulate sleep opportunities on ISS. In our study, astronauts were allocated enough time for sleep the night before the recordings. However, for proper sleep recovery, the quality of sleep is also critical. Unfortunately, data on sleep quality have yet to be acquired from the ISS. Here, we investigate sleep pressure markers during wakefulness in five astronauts throughout their 6-month space mission by the mean of electroencephalographic recordings. We show a global increase of theta oscillations (5-7 Hz) on the ISS compared to on Earth before the mission. We also show that local sleep-like events, another marker of sleep pressure, are more global in space (p < 0.001). By analysing the performances of the astronauts during a docking simulation, we found that local sleep-like events are more global when reaction times are slower (R 2 = 0.03, p = 0.006) and there is an increase of reaction times above 244 ms after 2 months in space (p = 0.012). Our analyses provide first evidence for increased sleep pressure in space and raise awareness on possible impacts on visuomotor performances in space.

20.
Sci Rep ; 8(1): 4220, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29523816

ABSTRACT

Purkinje cells (PC) control deep cerebellar nuclei (DCN), which in turn inhibit inferior olive nucleus, closing a positive feedback loop via climbing fibers. PC highly express potassium BK channels but their contribution to the olivo-cerebellar loop is not clear. Using multiple-unit recordings in alert mice we found in that selective deletion of BK channels in PC induces a decrease in their simple spike firing with a beta-range bursting pattern and fast intraburst frequency (~200 Hz). To determine the impact of this abnormal rhythm on the olivo-cerebellar loop we analyzed simultaneous rhythmicity in different cerebellar structures. We found that this abnormal PC rhythmicity is transmitted to DCN neurons with no effect on their mean firing frequency. Long term depression at the parallel-PC synapses was altered and the intra-burst complex spike spikelets frequency was increased without modification of the mean complex spike frequency in BK-PC-/- mice. We argue that the ataxia present in these conditional knockout mice could be explained by rhythmic disruptions transmitted from mutant PC to DCN but not by rate code modification only. This suggests a neuronal mechanism for ataxia with possible implications for human disease.


Subject(s)
Cerebellar Nuclei/physiology , Gene Deletion , Large-Conductance Calcium-Activated Potassium Channels/deficiency , Large-Conductance Calcium-Activated Potassium Channels/genetics , Long-Term Synaptic Depression/genetics , Periodicity , Purkinje Cells/metabolism , Animals , Mice , Mice, Inbred C57BL , Neurons/cytology , Purkinje Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...