Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 108(5): L052101, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38115422

ABSTRACT

Using stochastic simulations supported by analytics we determine the degree of nonergodicity of box-confined fractional Brownian motion for both sub- and superdiffusive Hurst exponents H. At H>1/2 the nonequivalence of the ensemble- and time-averaged mean-squared displacements (TAMSDs) is found to be most pronounced (with a giant spread of individual TAMSDs at H→1), with two distinct short-lag-time TAMSD exponents.

2.
Phys Rev E ; 108(3-1): 034113, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849140

ABSTRACT

How do nonlinear clocks in time and/or space affect the fundamental properties of a stochastic process? Specifically, how precisely may ergodic processes such as fractional Brownian motion (FBM) acquire predictable nonergodic and aging features being subjected to such conditions? We address these questions in the current study. To describe different types of non-Brownian motion of particles-including power-law anomalous, ultraslow or logarithmic, as well as superfast or exponential diffusion-we here develop and analyze a generalized stochastic process of scaled-fractional Brownian motion (SFBM). The time- and space-SFBM processes are, respectively, constructed based on FBM running with nonlinear time and space clocks. The fundamental statistical characteristics such as non-Gaussianity of particle displacements, nonergodicity, as well as aging are quantified for time- and space-SFBM by selecting different clocks. The latter parametrize power-law anomalous, ultraslow, and superfast diffusion. The results of our computer simulations are fully consistent with the analytical predictions for several functional forms of clocks. We thoroughly examine the behaviors of the probability-density function, the mean-squared displacement, the time-averaged mean-squared displacement, as well as the aging factor. Our results are applicable for rationalizing the impact of nonlinear time and space properties superimposed onto the FBM-type dynamics. SFBM offers a general framework for a universal and more precise model-based description of anomalous, nonergodic, non-Gaussian, and aging diffusion in single-molecule-tracking observations.

3.
Soft Matter ; 18(45): 8572-8581, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36373713

ABSTRACT

The analysis of the statistics of random walks undertaken by passive particles in complex media has important implications in a number of areas including pathogen transport and drug delivery. In several systems in which heterogeneity is important, the distribution of particle step-sizes has been found to be exponential in nature, as opposed to the Gaussian distribution associated with Brownian motion. Here, we first develop a theoretical framework to study a simplified version of this problem: the motion of passive tracers in a range of sub-environments with different viscosity. We show that in the limit of a large number of equi-distributed sub-environments spanning a broad viscosity range, an exact analytical expression for the underlying particle step-size distribution can be derived, which approaches an exponential distribution when step sizes are small. We then validate this using a simple experimental system of glycerol-water mixtures, in which the volume fraction of glycerol is systematically varied. Overall, the assumption of exponentially distributed step sizes may substantially over-estimate the incidence of large steps in heterogeneous systems, with important implications in the analysis of various biophysical processes.


Subject(s)
Glycerol , Viscosity , Probability , Particle Size , Motion
4.
Phys Rev E ; 106(3-1): 034137, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266856

ABSTRACT

How do near-bankruptcy events in the past affect the dynamics of stock-market prices in the future? Specifically, what are the long-time properties of a time-local exponential growth of stock-market prices under the influence of stochastically occurring economic crashes? Here, we derive the ensemble- and time-averaged properties of the respective "economic" or geometric Brownian motion (GBM) with a nonzero drift exposed to a Poissonian constant-rate price-restarting process of "resetting." We examine-based both on thorough analytical calculations and on findings from systematic stochastic computer simulations-the general situation of reset GBM with a nonzero [positive] drift and for all special cases emerging for varying parameters of drift, volatility, and reset rate in the model. We derive and summarize all short- and long-time dependencies for the mean-squared displacement (MSD), the variance, and the mean time-averaged MSD (TAMSD) of the process of Poisson-reset GBM under the conditions of both rare and frequent resetting. We consider three main regions of model parameters and categorize the crossovers between different functional behaviors of the statistical quantifiers of this process. The analytical relations are fully supported by the results of computer simulations. In particular, we obtain that Poisson-reset GBM is a nonergodic stochastic process, with generally MSD(Δ)≠TAMSD(Δ) and Variance(Δ)≠TAMSD(Δ) at short lag times Δ and for long trajectory lengths T. We investigate the behavior of the ergodicity-breaking parameter in each of the three regions of parameters and examine its dependence on the rate of reset at Δ/T≪1. Applications of these theoretical results to the analysis of prices of reset-containing options are pertinent.

5.
Phys Chem Chem Phys ; 24(31): 18482-18504, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35838015

ABSTRACT

How does a systematic time-dependence of the diffusion coefficient D(t) affect the ergodic and statistical characteristics of fractional Brownian motion (FBM)? Here, we answer this question via studying the characteristics of a set of standard statistical quantifiers relevant to single-particle-tracking (SPT) experiments. We examine, for instance, how the behavior of the ensemble- and time-averaged mean-squared displacements-denoted as the standard MSD 〈x2(Δ)〉 and TAMSD quantifiers-of FBM featuring (where H is the Hurst exponent and Δ is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity Dα(t) ∝ tα-1-germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with 〈x2(Δ)〉 ∝ Δα+2H-1 and . We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when α + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < α < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.


Subject(s)
Aging , Single Molecule Imaging , Animals , Diffusion , Motion , Normal Distribution
6.
Phys Rev E ; 105(1): L012106, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193263

ABSTRACT

We derive. the ensemble- and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic.

7.
Phys Chem Chem Phys ; 23(48): 27195-27206, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34821240

ABSTRACT

Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.


Subject(s)
Muramidase/chemistry , Adsorption , Animals , Chickens , Hydrogen-Ion Concentration , Models, Molecular , Monte Carlo Method , Muramidase/metabolism , Protons
8.
Phys Rev E ; 104(2-1): 024115, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525594

ABSTRACT

How related are the ergodic properties of the over- and underdamped Langevin equations driven by fractional Gaussian noise? We here find that for massive particles performing fractional Brownian motion (FBM) inertial effects not only destroy the stylized fact of the equivalence of the ensemble-averaged mean-squared displacement (MSD) to the time-averaged MSD (TAMSD) of overdamped or massless FBM, but also dramatically alter the values of the ergodicity-breaking parameter (EB). Our theoretical results for the behavior of EB for underdamped or massive FBM for varying particle mass m, Hurst exponent H, and trace length T are in excellent agreement with the findings of stochastic computer simulations. The current results can be of interest for the experimental community employing various single-particle-tracking techniques and aiming at assessing the degree of nonergodicity for the recorded time series (studying, e.g., the behavior of EB versus lag time). To infer FBM as a realizable model of anomalous diffusion for a set single-particle-tracking data when massive particles are being tracked, the EBs from the data should be compared to EBs of massive (rather than massless) FBM.

9.
Phys Rev E ; 104(2-1): 024105, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525678

ABSTRACT

How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x)=D_{0}|x|^{γ} and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicity-breaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB∼(1/r)-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.

10.
Phys Rev E ; 103(6-1): 062127, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34271619

ABSTRACT

Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, σ(t)∼t^{α}, named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Δ. The proportionality factor between these the two averages of the time series is Δ/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Δ/T≪1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with σ(t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations.

11.
Phys Rev E ; 104(6-1): 064603, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030844

ABSTRACT

We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.

12.
Phys Chem Chem Phys ; 22(48): 27955-27965, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33073805

ABSTRACT

In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.


Subject(s)
Doxorubicin/chemistry , Silicon Dioxide/chemistry , Adsorption , Diffusion , Models, Chemical , Molecular Dynamics Simulation
13.
Phys Rev E ; 102(1-1): 012146, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32794926

ABSTRACT

Heterogeneous diffusion processes (HDPs) feature a space-dependent diffusivity of the form D(x)=D_{0}|x|^{α}. Such processes yield anomalous diffusion and weak ergodicity breaking, the asymptotic disparity between ensemble and time averaged observables, such as the mean-squared displacement. Fractional Brownian motion (FBM) with its long-range correlated yet Gaussian increments gives rise to anomalous and ergodic diffusion. Here, we study a combined model of HDPs and FBM to describe the particle dynamics in complex systems with position-dependent diffusivity driven by fractional Gaussian noise. This type of motion is, inter alia, relevant for tracer-particle diffusion in biological cells or heterogeneous complex fluids. We show that the long-time scaling behavior predicted theoretically and by simulations for the ensemble- and time-averaged mean-squared displacements couple the scaling exponents α of HDPs and the Hurst exponent H of FBM in a characteristic way. Our analysis of the simulated data in terms of the rescaled variable y∼|x|^{1/(2/(2-α))}/t^{H} coupling particle position x and time t yields a simple, Gaussian probability density function (PDF), P_{HDP-FBM}(y)=e^{-y^{2}}/sqrt[π]. Its universal shape agrees well with theoretical predictions for both uni- and bimodal PDF distributions.

14.
J R Soc Interface ; 17(167): 20200199, 2020 06.
Article in English | MEDLINE | ID: mdl-32574545

ABSTRACT

Employing extensive Monte Carlo computer simulations, we investigate in detail the properties of multichain adsorption of charged flexible polyelectrolytes (PEs) onto oppositely charged spherical nanoparticles (SNPs). We quantify the conditions of critical adsorption-the phase-separation curve between the adsorbed and desorbed states of the PEs-as a function of the SNP surface-charge density and the concentration of added salt. We study the degree of fluctuations of the PE-SNP electrostatic binding energy, which we use to quantify the emergence of the phase subtransitions, including a series of partially adsorbed PE configurations. We demonstrate how the phase-separation adsorption-desorption boundary shifts and splits into multiple subtransitions at low-salt conditions, thereby generalizing and extending the results for critical adsorption of a single PE onto the SNP. The current findings are relevant for finite concentrations of PEs around the attracting SNP, such as the conditions for PE adsorption onto globular proteins carrying opposite electric charges.


Subject(s)
Electrolytes , Nanospheres , Adsorption , Polyelectrolytes , Polymers , Surface Properties
15.
Phys Rev E ; 102(6-1): 062104, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465945

ABSTRACT

What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.

16.
Sci Rep ; 9(1): 12077, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427659

ABSTRACT

Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called "autoinducers") and themselves sense the autoinducer concentration in their vicinity. Once-due to increased local cell density inside a "cluster" of the growing colony-the concentration of autoinducers exceeds a threshold value, cells in this clusters get "induced" into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.


Subject(s)
Bacteria/growth & development , Biofilms/growth & development , Models, Biological , Quorum Sensing/genetics , Bacteria/genetics , Bacterial Proteins/genetics , Signal Transduction/genetics
17.
J Chem Phys ; 150(14): 144901, 2019 Apr 14.
Article in English | MEDLINE | ID: mdl-30981236

ABSTRACT

We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens.


Subject(s)
Acanthamoeba castellanii/metabolism , Movement , Vacuoles/metabolism , Acanthamoeba castellanii/cytology , Acanthamoeba castellanii/physiology , Diffusion , Models, Theoretical
18.
Soft Matter ; 15(12): 2526-2551, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30734041

ABSTRACT

Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity", fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.

19.
Phys Chem Chem Phys ; 20(35): 23034-23054, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30167616

ABSTRACT

What is the underlying diffusion process governing the spreading dynamics and search strategies employed by amoeboid cells? Based on the statistical analysis of experimental single-cell tracking data of the two-dimensional motion of the Dictyostelium discoideum amoeboid cells, we quantify their diffusive behaviour based on a number of standard and complementary statistical indicators. We compute the ensemble- and time-averaged mean-squared displacements (MSDs) of the diffusing amoebae cells and observe a pronounced spread of short-time diffusion coefficients and anomalous MSD-scaling exponents for individual cells. The distribution functions of the cell displacements, the long-tailed distribution of instantaneous speeds, and the velocity autocorrelations are also computed. In particular, we observe a systematic superdiffusive short-time behaviour for the ensemble- and time-averaged MSDs of the amoeboid cells. Also, a clear anti-correlation of scaling exponents and generalised diffusivity values for different cells is detected. Most significantly, we demonstrate that the distribution function of the cell displacements has a strongly non-Gaussian shape and-using a rescaled spatio-temporal variable-the cell-displacement data collapse onto a universal master curve. The current analysis of single-cell motions can be implemented for quantifying diffusive behaviours in other living-matter systems, in particular, when effects of active transport, non-Gaussian displacements, and heterogeneity of the population are involved in the dynamics.


Subject(s)
Dictyostelium/cytology , Computer Simulation , Diffusion , Kinetics , Motion , Single-Cell Analysis
20.
Phys Chem Chem Phys ; 20(46): 29018-29037, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30255886

ABSTRACT

We employ Bayesian statistics using the nested-sampling algorithm to compare and rank multiple models of ergodic diffusion (including anomalous diffusion) as well as to assess their optimal parameters for in silico-generated and real time-series. We focus on the recently-introduced model of Brownian motion with "diffusing diffusivity"-giving rise to widely-observed non-Gaussian displacement statistics-and its comparison to Brownian and fractional Brownian motion, also for the time-series with some measurement noise. We conduct this model-assessment analysis using Bayesian statistics and the nested-sampling algorithm on the level of individual particle trajectories. We evaluate relative model probabilities and compute best-parameter sets for each diffusion model, comparing the estimated parameters to the true ones. We test the performance of the nested-sampling algorithm and its predictive power both for computer-generated (idealised) trajectories as well as for real single-particle-tracking trajectories. Our approach delivers new important insight into the objective selection of the most suitable stochastic model for a given time-series. We also present first model-ranking results in application to experimental data of tracer diffusion in polymer-based hydrogels.

SELECTION OF CITATIONS
SEARCH DETAIL
...