Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 79(3): 1533-42, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15650179

ABSTRACT

The zinc finger motifs in retroviral nucleocapsid (NC) proteins are essential for viral replication. Disruption of these Cys-X2-Cys-X4-His-X4-Cys zinc-binding structures eliminates infectivity. To determine if N-ethylmaleimide (NEM) can inactivate human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) preparations by alkylating cysteines of NC zinc fingers, we treated infectious virus with NEM and evaluated inactivation of infectivity in cell-based assays. Inactivation was rapid and proportional to the NEM concentration. NEM treatment of HIV-1 or SIV resulted in extensive covalent modification of NC and other internal virion proteins. In contrast, viral envelope glycoproteins, in which the cysteines are disulfide bonded, remained intact and functional, as assayed by high-performance liquid chromatography, fusion-from-without analyses, and dendritic cell capture. Quantitative PCR assays for reverse transcription intermediates showed that NEM and 2,2'-dipyridyl disulfide (aldrithiol-2), a reagent which inactivates retroviruses through oxidation of cysteines in internal virion proteins such as NC, blocked HIV-1 reverse transcription prior to the formation of minus-strand strong-stop products. However, the reverse transcriptase from NEM-treated virions remained active in exogenous template assays, consistent with a role for NC in reverse transcription. Since disruption of NC zinc finger structures by NEM blocks early postentry steps in the retroviral infection cycle, virus preparations with modified NC proteins may be useful as vaccine immunogens and probes of the role of NC in viral replication.


Subject(s)
Ethylmaleimide/pharmacology , Gene Products, env/metabolism , HIV-1/drug effects , HIV-1/pathogenicity , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/pathogenicity , Cell Line , Dendritic Cells/cytology , Dendritic Cells/virology , HeLa Cells , Humans , Kinetics , Nucleocapsid/metabolism , Zinc Fingers
2.
J Virol ; 77(10): 5547-56, 2003 May.
Article in English | MEDLINE | ID: mdl-12719547

ABSTRACT

The nucleocapsid (NC) region of human immunodeficiency virus type 1 (HIV-1) Gag is required for specific genomic RNA packaging. To determine if NC is absolutely required for virion formation, we deleted all but seven amino acids from NC in a full-length NL4-3 proviral clone. This construct, DelNC, produced approximately four- to sixfold fewer virions than did the wild type, and these virions were noninfectious (less than 10(-6) relative to the wild type) and severely genomic RNA deficient. Immunoblot and high-pressure liquid chromatography analyses showed that all of the mature Gag proteins except NC were present in the mutant virion preparations, although there was a modest decrease in Gag processing. DelNC virions had lower densities and were more heterogeneous than wild-type particles, consistent with a defect in the interaction assembly or I domain. Electron microscopy showed that the DelNC virions displayed a variety of aberrant morphological forms. Inactivating the protease activity of DelNC by mutation or protease inhibitor treatment restored virion production to wild-type levels. DelNC-protease mutants formed immature-appearing particles that were as dense as wild-type virions without incorporating genomic RNA. Therefore, protease activity combined with the absence of NC causes the defect in DelNC virion production, suggesting that premature processing of Gag during assembly causes this effect. These results show that HIV-1 can form particles efficiently without NC.


Subject(s)
Gene Deletion , HIV Protease/drug effects , HIV-1/metabolism , Nucleocapsid/genetics , Virion/metabolism , Cell Line , Gene Products, gag/chemistry , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , HIV-1/physiology , Humans , Nucleocapsid/chemistry , Nucleocapsid/metabolism , RNA, Viral/metabolism , Virion/genetics , Virus Assembly
3.
Virology ; 293(2): 368-78, 2002 Feb 15.
Article in English | MEDLINE | ID: mdl-11886257

ABSTRACT

Full-length retroviral RNA serves as both messenger and genomic RNA. Therefore, an unspliced RNA could play both roles: viral mRNA could be bound in cis by the same Gag polyprotein that it produced, becoming a packaged genomic RNA. To test this possibility, we used in vivo packaging experiments which coexpressed wild-type NL4-3 RNA and NL4-3-based mutant RNA that, ideally, could not translate Gag. However, mutating the gag initiator produced a mutant (pNLX) that expressed a truncated Gag, Gag*, initiated at methionine 10 in the CA region (142 of Pr55(Gag)). Gag* can be rescued into virions by Gag and, as it contains the NC domain, could package RNA in cis. To eliminate NC and the CA dimerization domain, a nonsense mutation in CA at residue 99 was introduced into pNLX to produce pNLXX, which expresses an RNA that should only be packaged in trans. Cotransfection packaging experiments revealed that wild-type genomic RNA was packaged at an 8-fold greater level than NLXX RNA given equal expression of both RNAs. Experiments that varied the relative amounts of these RNAs in the cell found that the wild-type RNA was encapsidated with a packaging preference (i.e., the relative amount of this RNA in virions versus cells) of 6- to 13-fold over the NLXX RNA, showing that the NLXX RNA did not efficiently compete with NL4-3 RNA. These data suggest that the wild-type RNA's ability to express Pr55(Gag) and, by inference, actively translate Gag confers an advantage in packaging over the nearly identical NLXX RNA. In contrast, the NLX RNA competed with wild-type RNA at a 1-to-3 preference. This ratio is similar to the amounts of Gag* rescued by Gag, suggesting that the presence of Gag* assists in the encapsidation of NLX RNA. Together, our data link translation and particle formation to the packaging of viral RNA and support a model of cis packaging where nascent Gag proteins encapsidate their cognate RNA.


Subject(s)
Gene Products, gag/physiology , HIV-1/physiology , Protein Precursors/physiology , RNA, Viral/genetics , Virus Assembly , Cell Line , Gene Products, gag/genetics , Gene Products, gag/metabolism , HIV-1/genetics , Humans , Point Mutation , Protein Biosynthesis , Protein Precursors/genetics , Protein Precursors/metabolism , RNA, Messenger/metabolism , RNA, Viral/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...