Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 111(2): 542-548, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29365135

ABSTRACT

Larval Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) were exposed to seven different entomopathogenic nematode species to test their potential infectivity in a laboratory setting. Known D. virgifera-infecting nematode species Heterorhabditis bacteriophora Poinar, Heterorhabditis megidis Poinar, Jackson & Klein, Steinernema feltiae Filipjev, and Steinernema carpocapsae Weiser were tested in a concerted experiment alongside Steinernema diaprepesi Nguyen & Duncan, Steinernema riobrave Cabanillas, Poinar & Raulston, and a Missouri wild-type H. bacteriophora which have not been previously tested on D. virgifera. The species S. rarum Doucet was tested separately for D. virgifera infectivity. Third-instar D. virgifera were exposed to either 60 or 120 nematodes per larva for 6 d. Following exposure, mortality was recorded and larvae were examined to determine the presence of active nematode infections. Results indicated a significantly higher proportion of larvae with active infections from the Heterorhabditidae species and S. diaprepesi than the other Steinernematidae species for both exposure rates; mortality data indicated a similar trend. Steinernema rarum showed almost no infectivity in laboratory experiments.


Subject(s)
Coleoptera , Pest Control, Biological , Rhabditida , Animals , Larva , Species Specificity
2.
J Chem Ecol ; 41(2): 168-77, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25712748

ABSTRACT

Metal hyperaccumulation may be an elemental defense, in which high concentrations of a metal in plant tissues decrease herbivore survival or growth rate. The Joint Effects Hypothesis suggests that a combination of metals, or a combination of a metal with an organic compound, may have an enhanced defensive effect. The enhancement may be additive or synergistic: in either case the concentration of a particular metal necessary to provide a defensive benefit for the plant is lowered. We tested the Joint Effects Hypothesis using Spodoptera exigua (beet armyworm) neonates fed artificial diets. Metal + metal experiments utilized diets amended with metal pairs, using four metals commonly hyperaccumulated by plants (Co, Cu, Ni, and Zn). We also conducted metal + organic compound experiments, pairing each metal with nicotine, mustard seed powder, or tannic acid. We tested for joint effects using both lethal (LC20 levels) and sublethal concentrations (10-25 % reduced larval weight) of the chemicals tested. For all experiments, either additive or synergistic effects were found. Of the metal + metal pairs tested, three (Co + Cu, Cu + Zn, and Ni + Zn) were synergistic in lethal concentration tests and only Co + Cu was synergistic in sublethal tests. For metal + organic combination lethal tests, synergism occurred for all combinations except for Co or Ni + nicotine, Ni + mustard seed powder, and Zn + nicotine. For sublethal tests, Zn + all three organic chemicals, Co + mustard seed powder or tannic acid, and Cu + nicotine, were synergistic. These results support the Joint Effects Hypothesis, suggesting that metals combined with other metals or organic compounds may be more effective against herbivores than individual metals.


Subject(s)
Food Chain , Herbivory , Metals, Heavy/toxicity , Spodoptera/drug effects , Animal Feed/analysis , Animals , Diet , Larva/drug effects , Larva/growth & development , Spodoptera/growth & development
3.
J Chem Ecol ; 39(6): 764-72, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23709043

ABSTRACT

Increased metal availability in the environment can be detrimental for the growth and development of all organisms in a food web. In part, this toxicity is due to biotransfer or bioaccumulation of metals between trophic levels. We evaluated the survival, growth, and development of a generalist Hemipteran predator (Podisus maculiventris) when fed herbivorous prey (Spodoptera exigua) reared on artificial diet amended with Cu, Zn, Ni, and Co. Predator nymphs were fed S. exigua larvae raised on diet amended with sublethal (Minimum Sublethal Concentration or MSC) or lethal (Minimum Lethal Concentration or MLC) concentrations of each metal, as well as control diet. We determined if metals were biotransferred or bioaccumulated from the diet to herbivore and predator, as well as if predator growth or survival was affected by herbivore diet. Podisus maculiventris fed herbivores raised on MLC levels of both Cu and Zn took significantly longer to mature to adults, whereas their overall survival was not affected by prey diet metal concentration for any metal. Adult weights were significantly reduced for predators raised on herbivores reared on diets amended with the MLC of Cu and Zn. Copper and Zn were bioaccumulated from diet to herbivore and from herbivore to predator, whereas Ni was biotransferred (although concentrations decreased as trophic level increased). The pattern for Co was more complex, with biotransfer the main outcome. Our results show that availability of metals in a food web can affect growth and development of a hemipteran predator, and that metals are transferred between trophic levels, with metal-specific biotransfer and bioaccumulation outcomes.


Subject(s)
Food Chain , Heteroptera/physiology , Metals, Heavy/pharmacology , Spodoptera/physiology , Animals , Diet , Heteroptera/growth & development , Larva/growth & development , Larva/physiology , Nymph/growth & development , Nymph/physiology , Spectrophotometry, Atomic , Spodoptera/growth & development
4.
J Chem Ecol ; 39(5): 666-74, 2013 May.
Article in English | MEDLINE | ID: mdl-23584612

ABSTRACT

Elemental defense is a relatively newly recognized phenomenon in which plants use elements present in their tissue to reduce damage by herbivores or pathogens. In the present study, neonates of the generalist herbivore, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), were fed artificial diets amended with varying concentrations of Co, Cu, Ni, and Zn that are hyperaccumulated by plants to determine minimum lethal concentrations (MLC) and minimum sublethal concentrations (MSC) for each metal. MLC values (dry mass) for Co (45 µg/g), Ni (230 µg/g), and Zn (280 µg/g) were below published minimum hyperaccumulator levels. MSC levels (dry mass) for Co (15 µg/g), Ni (140 µg/g), and Zn (200 µg/g) were at concentrations lower than published minimum accumulator levels. Furthermore, both MLC and MSC values for Zn were within normal tissue concentrations. These results indicate that elemental defense for Co, Ni, and Zn may be effective at concentrations lower than hyperaccumulator levels and so may be more widespread than previously believed.


Subject(s)
Metals, Heavy/toxicity , Spodoptera/drug effects , Animals , Body Weight/drug effects , Diet , Larva/drug effects , Plant Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...