Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 10(4): 4873-81, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27074626

ABSTRACT

This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale.

2.
Nat Mater ; 11(3): 213-6, 2012 Jan 29.
Article in English | MEDLINE | ID: mdl-22286334

ABSTRACT

Chiral-selective growth of single-walled carbon nanotubes (SWNTs) remains a great challenge that hinders their use in applications such as electronics and medicine. Recent experimental and theoretical reports have begun to address this problem by suggesting that selectivity may be achieved during nucleation by changing the catalyst composition or structure. Nevertheless, to establish a rational basis for chiral-selective synthesis, the underlying mechanisms governing nucleation, growth, and termination of SWNTs must be better understood. To this end, we report the first measurements of growth rates of individual SWNTs through in situ Raman spectroscopy and correlate them with their chiral angles. Our results show that the growth rates are directly proportional to the chiral angles, in agreement with recent theoretical predictions. Importantly, the evidence singles out the growth stage as responsible for the chiral distribution-distinct from nucleation and termination which might also affect the final product distribution. Our results suggest a route to chiral-selective synthesis of SWNTs through rational synthetic design strategies based on kinetic control.


Subject(s)
Nanotechnology/methods , Catalysis , Kinetics , Models, Molecular , Nanotubes, Carbon/chemistry , Spectrum Analysis, Raman
3.
ACS Nano ; 6(1): 843-50, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22128755

ABSTRACT

Using near-infrared fluorescence videomicroscopy with spectrally selective excitation and imaging, more than 400 individual (10,2) single-walled carbon nanotubes (SWCNTs) have been studied in unsorted liquid dispersions. For each nanotube, the spatially integrated emission intensity was measured under controlled excitation conditions while its length was found either from direct imaging or from the diffusion coefficient computed by analyzing its Brownian motion trajectory. The studied nanotubes ranged in length from 170 to 5300 nm. For any length, a wide variation in emission intensities was observed. These variations are attributed to differing densities of nanotube imperfections that cause fluorescence quenching. The brightest nanotubes at each length (presumed near-pristine) show total emission nearly proportional to length. This implies a nearly constant fluorescence quantum yield and a constant absorption cross section per carbon atom, validating conventional Beer-Lambert analysis for finding concentrations of SWCNT species. Ensemble-averaged emission is also proportional to length, but at only ca. 40% of the near-pristine values. Further research is needed to investigate the extrinsic effects causing wide variation in quantum yields and assess their implications for SWCNT fluorimetry.


Subject(s)
Models, Chemical , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Spectrometry, Fluorescence/methods , Titanium/chemistry , Computer Simulation , Materials Testing , Particle Size
4.
ACS Nano ; 4(2): 1131-45, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20092353

ABSTRACT

A scalable and facile approach is demonstrated where as-grown patterns of well-aligned structures composed of single-walled carbon nanotubes (SWNT) synthesized via water-assisted chemical vapor deposition (CVD) can be transferred, or printed, to any host surface in a single dry, room-temperature step using the growth substrate as a stamp. We demonstrate compatibility of this process with multiple transfers for large-scale device and specifically tailored pattern fabrication. Utilizing this transfer approach, anisotropic optical properties of the SWNT films are probed via polarized absorption, Raman, and photoluminescence spectroscopies. Using a simple model to describe optical transitions in the large SWNT species present in the aligned samples, polarized absorption data are demonstrated as an effective tool for accurate assignment of the diameter distribution from broad absorption features located in the infrared. This can be performed on either well-aligned samples or unaligned doped samples, allowing simple and rapid feedback of the SWNT diameter distribution that can be challenging and time-consuming to obtain in other optical methods. Furthermore, we discuss challenges in accurately characterizing alignment in structures of long versus short carbon nanotubes through optical techniques, where SWNT length makes a difference in the information obtained in such measurements. This work provides new insight to the efficient transfer and optical properties of an emerging class of long, large diameter SWNT species typically produced in the CVD process.


Subject(s)
Nanotubes, Carbon/chemistry , Optical Phenomena , Printing/methods , Absorption , Anisotropy , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Spectrophotometry, Infrared , Volatilization , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...