Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 11(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32531994

ABSTRACT

Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.


Subject(s)
Chenopodiaceae/genetics , Plant Proteins/genetics , Stress, Physiological/genetics , Transcriptome/genetics , Adaptation, Physiological/genetics , Chenopodiaceae/growth & development , Droughts , Endangered Species , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Molecular Sequence Annotation , Plant Growth Regulators/genetics , Polyethylene Glycols/toxicity , Sequence Analysis, DNA , Stress, Physiological/drug effects , Transcription Factors/genetics
2.
Physiol Mol Biol Plants ; 24(4): 683-692, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30042622

ABSTRACT

Haloxylon persicum (Bunge ex Boiss & Buhse), is one of the hardy woody desert shrubs, which is now endangered and/or nearing extinction. Urban landscape development and overgrazing are the major threats for the erosion of this important plant species. For conserving the species, it is critical to develop an efficient in vitro regeneration protocol for rapid multiplication of large number of regenerants. Leaf explants, cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) (0.5, 1, 2 µM), showed significant difference in bud sprouting and adventitious shoot induction. The highest shoot bud formation was recorded on MS medium supplemented with 0.5 µM TDZ. Shoot tip necrosis (STN), observed after first subculture of shoot buds in same medium, increased in severity with subculture time. Application of calcium (4 mM) and boron (0.1 mM) in combination with kinetin (10 µM) in the subculture medium significantly reduced the intensity of STN. On an average eight shoots/explant were produced by alleviating this problem. ISSR marker analysis revealed monomorphic banding pattern between progenies and parents, indicating the true to type nature of the clones and its parents.

3.
3 Biotech ; 8(2): 109, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29430370

ABSTRACT

Nine (9) different date palm (Phoenix dactylifera L.) cultivars from UAE, which differ in their flower timings were selected to determine the polymorphism and genetic relationship between these cultivars. Hereditary differences and interrelationships were assessed utilizing inter-simple sequence repeat (ISSR) and directed amplification of minisatellite DNA region (DAMD) primers. Analysis on eight DAMD and five ISSR markers produced total of 113 amplicon including 99 polymorphic and 14 monomorphic alleles with a polymorphic percentage of 85.45. The average polymorphic information content for the two-marker system was almost similar (DAMD, 0.445 and ISSR, 0.459). UPGMA based clustering of DAMD and ISSR revealed that mid-season cultivars, Mkh (Khlas) and MB (Barhee) grouped together to form a subcluster in both the marker systems. The genetic similarity analysis followed by clustering of the cumulative data from the DAMD and ISSR resulted in two major clusters with two early-season cultivars (ENg and Ekn), two mid-season cultivars (MKh and MB) and one late-season cultivar (Lkhs) in cluster 1, cluster 2 includes two late-season cultivars, one early-season cultivar and one mid-season cultivar. The cluster analysis of both DAMD and ISSR marker revealed that, the patterns of variation between some of the tested cultivars were similar in both DNA marker systems. Hence, the present study signifies the applicability of DAMD and ISSR marker system in detecting genetic diversity of date palm cultivars flowering at different seasons. This may facilitate the conservation and improvement of date palm cultivars in the future.

4.
Saudi J Biol Sci ; 18(4): 369-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-23961149

ABSTRACT

An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

5.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-671451

ABSTRACT

AIM To evaluate the antioxidant potential and indole alkaloid variations in different parts of two varieties (rosea and alba) of Catharanthus roseus. METHODS The antioxidant potentials were examined in terms of non-enzymatic antioxidant molecules and activities of antioxidant enzymes. The non-enzymatic antioxidant molecules studied were ascorbic acid, α-tocopherol and reduced glutathione. The estimated antioxidant enzymes were superoxide dismutase, ascorbate peroxidase, catalase, peroxidase and polyphenol oxidase. The analyses were carried out in the field-collected samples. The antioxidant and alkaloid profiles were estimated from roots, stems, leaves, flowers and pods. RESULTS The roots and stems had higher antioxidant content when compared with other parts of the plant. The lowest content was found in flowers and pods. The rosea variety was good performer in terms of antioxidant and alkaloid contents. The activities of antioxidant enzymes were higher in leaves when compared with other parts. But indole alkaloid content was found to be higher in the roots of rosea variety. CONCLUSION The pink-flowered rosea variety of Catharanthus roseus is more suitable for cultivation in terms of antioxidant and alkaloid contents.

6.
Article in English | WPRIM (Western Pacific) | ID: wpr-309004

ABSTRACT

The ability of triadimefon (TDM), a triazolic fungicide, to alter the biochemical constituents and thereby minimizing the days required for sprouting in white yam (Dioscorea rotundata Poir.) tubers during storage under (30+/-2) degrees C in the dark, was studied. TDM at 20 mg/L was given to tubers by dipping the tubers in treatment solution containing 20 mg/L TDM on 10, 25 and 40 d after storage (DAS). Starch, sugars, protein, amino acid contents as well as protease and alpha-amylase activities were estimated on 15, 30 and 45 DAS from two physiological regions viz., apical and basal regions of the tubers. In normal conditions (control) sprouting occurred on 70 to 80 DAS. The starch content decreased, while protein, amino acid, sugar contents and protease and alpha-amylase activities were increased due to TDM treatment and led to early sprouting.


Subject(s)
Dioscorea , Metabolism , Food Preservation , Plant Tubers , Metabolism , Temperature , Time Factors , Triazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...