Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(16): 9072-9080, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37043415

ABSTRACT

A novel class of photoswitches based on a phenylazothiazole scaffold that undergoes reversible isomerization under visible-light irradiation is reported. The photoswitch, which comprises a thiazole heteroaryl segment directly connected to a phenyl azo chromophore, has very different spectral characteristics, such as a redshifted absorption maximum wavelength and well-separated absorption bands of the trans and cis isomers, than conventional azobenzene and other heteroaryl azo compounds. Substituents at the ortho and para positions of the phenyl ring of the photoswitch resulted in a further shift to longer wavelengths up to 525 nm at the absorption maximum with a small thermal stability compensation. These photoswitches showed excellent photostationary distributions of the trans and cis isomers, thermal half-lives of up to 7.2 h, and excellent reductant stability. The X-ray crystal structure analysis revealed that the trans isomers exhibited a planar geometry and the cis isomers exhibited a T-shaped orthogonal geometry. Detailed ab initio calculations further demonstrated the plausible electronic transitions and isomerization energy barriers, which were consistent with the experimental observations. The fundamental design principles elucidated in this study will aid in the development of a wide variety of visible-light photoswitches for photopharmacological applications.

2.
Bioorg Med Chem Lett ; 29(22): 126684, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31606347

ABSTRACT

We designed a ratiometric carbohydrate sensor consisting of the boron dipyrromethene fluorophore substituted with boronic acid at the 2-position, based upon the strong substituent dependency of the absorbance/fluorescence wavelengths of BODIPY. The substituent is in equilibrium between the boronic acid B(OH)2 and boronate (B(OH)3-) forms, which have different absorbance/fluorescence wavelengths in the visible region. Reaction of the boronic acid moiety with hydroxy groups of carbohydrate affords a cyclic ester and shifts the equilibrium in favor of the boronate (B(OR)3-) form, resulting in a carbohydrate-concentration-dependent change of the fluorescence ratio. Thus, the sensor, BA-BODIPY, can ratiometrically detect carbohydrate at a pH near the pKa of cyclic ester formation.


Subject(s)
Boron Compounds/chemistry , Carbohydrates/analysis , Drug Development , Boron Compounds/chemical synthesis , Hydrogen-Ion Concentration , Molecular Structure , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...