Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Trop Med Hyg ; 111(1): 11-25, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38714193

ABSTRACT

The South Asia International Center of Excellence for Malaria Research, an NIH-funded collaborative program, investigated the epidemiology of malaria in the Indian state of Goa through health facility-based data collected from the Goa Medical College and Hospital (GMC), the state's largest tertiary healthcare facility, between 2012 and 2021. Our study investigated region-specific spatial and temporal patterns of malaria transmission in Goa and the factors driving such patterns. Over the past decade, the number of malaria cases, inpatients, and deaths at the GMC decreased significantly after a peak in 2014-2015. However, the proportion of severe malaria cases increased over the study period. Also, a trend of decreasing average parasitemia and increasing average gametocyte density suggests a shift toward submicroscopic infections and an increase in transmission commitment characteristic of low-transmission regions. Although transmission occurred throughout the year, 75% of the cases occurred between June and December, overlapping with the monsoon (June-October), which featured rainfall above yearly average, minimal diurnal temperature variation, and high relative humidity. Sociodemographic factors also had a significant association with malaria cases, with cases being more frequent in the 15-50-year-old age group, men, construction workers, and people living in urban areas within the GMC catchment region. Our environmental model of malaria transmission projects almost negligible transmission at the beginning of 2025 (annual parasitic index: 0.0095, 95% CI: 0.0075-0.0114) if the current control measures continue undisrupted.


Subject(s)
Malaria , Humans , India/epidemiology , Adolescent , Female , Adult , Male , Child , Middle Aged , Young Adult , Child, Preschool , Infant , Malaria/transmission , Malaria/epidemiology , Malaria/prevention & control , Aged , Seasons , Hospitals/statistics & numerical data , Disease Eradication , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Malaria, Falciparum/prevention & control
2.
Antimicrob Agents Chemother ; 68(2): e0068423, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38193705

ABSTRACT

Due to the spread of resistance to front-line artemisinin derivatives worldwide, there is a need for new antimalarials. Tartrolon E (TrtE), a secondary metabolite of a symbiotic bacterium of marine bivalve mollusks, is a promising antimalarial because it inhibits the growth of sexual and asexual blood stages of Plasmodium falciparum at sub-nanomolar levels. The potency of TrtE warrants further investigation into its mechanism of action, cytotoxicity, and ease with which parasites may evolve resistance to it.


Subject(s)
Antimalarials , Artemisinins , Lactones , Malaria, Falciparum , Humans , Plasmodium falciparum , Artemisinins/pharmacology , Antimalarials/pharmacology , Malaria, Falciparum/parasitology
3.
Malar J ; 22(1): 250, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653486

ABSTRACT

BACKGROUND: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. METHODS: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either - 80 °C or liquid nitrogen were also compared. RESULTS: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P < 0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection of 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitaemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (> 20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 h. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average of 30.0% post-MACS parasitaemia and an average of 5.30 × 105 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 days) or long-term (7-10 years) storage at - 80 °C on parasite recovery, enrichment or viability was observed. CONCLUSIONS: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Humans , Biological Specimen Banks , Reproducibility of Results , Parasitemia
4.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36993272

ABSTRACT

Background: Plasmodium vivax is the second most prevalent cause of malaria yet remains challenging to study due to the lack of a continuous in vitro culture system, highlighting the need to establish a biobank of clinical isolates with multiple freezes per sample for use in functional assays. Different methods for cryopreserving parasite isolates were compared and subsequently the most promising one was validated. Enrichment of early- and late-stage parasites and parasite maturation were quantified to facilitate assay planning. Methods: In order to compare cryopreservation protocols, nine clinical P. vivax isolates were frozen with four glycerolyte-based mixtures. Parasite recovery post thaw, post KCl-Percoll enrichment and in short-term in vitro culture was measured via slide microscopy. Enrichment of late-stage parasites by magnetic activated cell sorting (MACS) was measured. Short and long-term storage of parasites at either -80°C or liquid nitrogen were also compared. Results: Of the four cryopreservation mixtures, one mixture (glycerolyte:serum:RBC at a 2.5:1.5:1 ratio) resulted in improved parasite recovery and statistically significant (P<0.05) enhancement in parasite survival in short-term in vitro culture. A parasite biobank was subsequently generated using this protocol resulting in a collection with 106 clinical isolates, each with 8 vials. The quality of the biobank was validated by measuring several factors from 47 thaws: the average reduction in parasitemia post-thaw (25.3%); the average fold enrichment post KCl-Percoll (6.65-fold); and the average percent recovery of parasites (22.0%, measured from 30 isolates). During short-term in vitro culture, robust maturation of ring stage parasites to later stages (>20% trophozoites, schizonts and gametocytes) was observed in 60.0% of isolates by 48 hours. Enrichment of mature parasite stages via MACS showed good reproducibility, with an average 30.0% post-MACS parasitemia and an average 5.30 × 10 5 parasites/vial. Finally, the effect of storage temperature was tested, and no large impacts from short-term (7 day) or long term (7 - 10 year) storage at -80°C on parasite recovery, enrichment or viability was observed. Conclusions: Here, an optimized freezing method for P. vivax clinical isolates is demonstrated as a template for the generation and validation of a parasite biobank for use in functional assays.

5.
Am J Trop Med Hyg ; 107(4_Suppl): 118-123, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228906

ABSTRACT

The Malaria Evolution in South Asia (MESA) International Center of Excellence for Malaria Research (ICEMR) conducted research studies at multiple sites in India to record blood-slide positivity over time, but also to study broader aspects of the disease. From the Southwest of India (Goa) to the Northeast (Assam), the MESA-ICEMR invested in research equipment, operational capacity, and trained personnel to observe frequencies of Plasmodium falciparum and Plasmodium vivax infections, clinical presentations, treatment effectiveness, vector transmission, and reinfections. With Government of India partners, Indian and U.S. academics, and trained researchers on the ground, the MESA-ICEMR team contributes information on malaria in selected parts of India.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Asia/epidemiology , Humans , India/epidemiology , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Vivax/epidemiology , Plasmodium falciparum , Plasmodium vivax
6.
Am J Trop Med Hyg ; 107(4_Suppl): 107-117, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228910

ABSTRACT

The Malaria Evolution in South Asia (MESA) International Center for Excellence in Malaria Research (ICEMR) was established by the US National Institutes of Health (US NIH) as one of 10 malaria research centers in endemic countries. In 10 years of hospital-based and field-based work in India, the MESA-ICEMR has documented the changing epidemiology and transmission of malaria in four different parts of India. Malaria Evolution in South Asia-ICEMR activities, in collaboration with Indian partners, are carried out in the broad thematic areas of malaria case surveillance, vector biology and transmission, antimalarial resistance, pathogenesis, and host response. The program integrates insights from surveillance and field studies with novel basic science studies. This is a two-pronged approach determining the biology behind the disease patterns seen in the field, and generating new relevant biological questions about malaria to be tested in the field. Malaria Evolution in South Asia-ICEMR activities inform local and international stakeholders on the current status of malaria transmission in select parts of South Asia including updates on regional vectors of transmission of local parasites. The community surveys and new laboratory tools help monitor ongoing efforts to control and eliminate malaria in key regions of South Asia including the state of evolving antimalarial resistance in different parts of India, new host biomarkers of recent infection, and molecular markers of pathogenesis from uncomplicated and severe malaria.


Subject(s)
Antimalarials , Malaria , Antimalarials/therapeutic use , Asia/epidemiology , Humans , India/epidemiology , International Cooperation , Malaria/diagnosis , Malaria/drug therapy , Malaria/epidemiology , National Institutes of Health (U.S.) , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...