Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 29(6): 1086-1101, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36355054

ABSTRACT

PURPOSE: We evaluated the activity of AZD8205, a B7-H4-directed antibody-drug conjugate (ADC) bearing a novel topoisomerase I inhibitor (TOP1i) payload, alone and in combination with the PARP1-selective inhibitor AZD5305, in preclinical models. EXPERIMENTAL DESIGN: IHC and deep-learning-based image analysis algorithms were used to assess prevalence and intratumoral heterogeneity of B7-H4 expression in human tumors. Several TOP1i-ADCs, prepared with Val-Ala or Gly-Gly-Phe-Gly peptide linkers, with or without a PEG8 spacer, were compared in biophysical, in vivo efficacy, and rat toxicology studies. AZD8205 mechanism of action and efficacy studies were conducted in human cancer cell line and patient-derived xenograft (PDX) models. RESULTS: Evaluation of IHC-staining density on a per-cell basis revealed a range of heterogeneous B7-H4 expression across patient tumors. This informed selection of bystander-capable Val-Ala-PEG8-TOP1i payload AZ14170133 and development of AZD8205, which demonstrated improved stability, efficacy, and safety compared with other linker-payload ADCs. In a study of 26 PDX tumors, single administration of 3.5 mg/kg AZD8205 provided a 69% overall response rate, according to modified RECIST criteria, which correlated with homologous recombination repair (HRR) deficiency (HRD) and elevated levels of B7-H4 in HRR-proficient models. Addition of AZD5305 sensitized very low B7-H4-expressing tumors to AZD8205 treatment, independent of HRD status and in models representing clinically relevant mechanisms of PARPi resistance. CONCLUSIONS: These data provide evidence for the potential utility of AZD8205 for treatment of B7-H4-expressing tumors and support the rationale for an ongoing phase 1 clinical study (NCT05123482). See related commentary by Pommier and Thomas, p. 991.


Subject(s)
Immunoconjugates , Neoplasms , Rats , Humans , Animals , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Topoisomerase I Inhibitors , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly (ADP-Ribose) Polymerase-1/genetics
2.
Cytotherapy ; 24(7): 720-732, 2022 07.
Article in English | MEDLINE | ID: mdl-35570170

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use. METHODS: In selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3. RESULTS: Where the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non-tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo. CONCLUSIONS: By combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.


Subject(s)
Glypicans , Receptors, Chimeric Antigen , Animals , Cell Line, Tumor , Glypicans/metabolism , Immunotherapy, Adoptive/methods , Mice , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Tumor Necrosis Factor Inhibitors , Xenograft Model Antitumor Assays
3.
Cancer Res ; 77(10): 2686-2698, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28283653

ABSTRACT

Immunogenic cell death (ICD) is the process by which certain cytotoxic drugs induce apoptosis of tumor cells in a manner that stimulates the immune system. In this study, we investigated whether antibody-drug conjugates (ADCS) conjugated with pyrrolobenzodiazepine dimer (PBD) or tubulysin payloads induce ICD, modulate the immune microenvironment, and could combine with immuno-oncology drugs to enhance antitumor activity. We show that these payloads on their own induced an immune response that prevented the growth of tumors following subsequent tumor cell challenge. ADCs had greater antitumor activity in immunocompetent versus immunodeficient mice, demonstrating a contribution of the immune system to the antitumor activity of these ADCs. ADCs also induced immunologic memory. In the CT26 model, depletion of CD8+ T cells abrogated the activity of ADCs when used alone or in combination with a PD-L1 antibody, confirming a role for T cells in antitumor activity. Combinations of ADCs with immuno-oncology drugs, including PD-1 or PD-L1 antibodies, OX40 ligand, or GITR ligand fusion proteins, produced synergistic antitumor responses. Importantly, synergy was observed in some cases with suboptimal doses of ADCs, potentially providing an approach to achieve potent antitumor responses while minimizing ADC-induced toxicity. Immunophenotyping studies in different tumor models revealed broad immunomodulation of lymphoid and myeloid cells by ADC and ADC/immuno-oncology combinations. These results suggest that it may be possible to develop novel combinatorial therapies with PBD- and tubulysin-based ADC and immuno-oncology drugs that may increase clinical responses. Cancer Res; 77(10); 2686-98. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , Immunoconjugates/pharmacology , Immunologic Factors/pharmacology , Pyrroles/pharmacology , Animals , Antibodies, Monoclonal/immunology , Biomarkers , Cancer Vaccines , Cell Line, Tumor , Disease Models, Animal , Drug Synergism , Female , Humans , Immunologic Memory , Immunophenotyping , Immunotherapy , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Rats , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Xenograft Model Antitumor Assays
4.
Neoplasia ; 17(8): 661-70, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26408258

ABSTRACT

Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti-PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti-PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti-PD-L1, increased the percentage of tumor-infiltrating CD8(+) T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Doxorubicin/analogs & derivatives , Immunotherapy/methods , Neoplasms/drug therapy , Algorithms , Animals , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Disease Models, Animal , Doxorubicin/pharmacology , Drug Synergism , Female , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/pathology , Polyethylene Glycols/pharmacology , Survival Analysis , Treatment Outcome , Tumor Burden/drug effects
5.
Mol Cancer Ther ; 14(7): 1637-49, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25948294

ABSTRACT

ADAM17 is the primary sheddase for HER pathway ligands. We report the discovery of a potent and specific ADAM17 inhibitory antibody, MEDI3622, which induces tumor regression or stasis in many EGFR-dependent tumor models. The inhibitory activity of MEDI3622 correlated with EGFR activity both in a series of tumor models across several indications as well in as a focused set of head and neck patient-derived xenograft models. The antitumor activity of MEDI3622 was superior to that of EGFR/HER pathway inhibitors in the OE21 esophageal model and the COLO205 colorectal model suggesting additional activity outside of the EGFR pathway. Combination of MEDI3622 and cetuximab in the OE21 model was additive and eradicated tumors. Proteomics analysis revealed novel ADAM17 substrates that function outside of the HER pathways and may contribute toward the antitumor activity of the monoclonal antibody.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , ADAM Proteins/immunology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/administration & dosage , Cetuximab/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , ErbB Receptors/metabolism , Female , HCT116 Cells , HT29 Cells , Humans , Mice, Inbred DBA , Mice, Nude , Neoplasms/immunology , Neoplasms/metabolism , Treatment Outcome
6.
Mol Cancer Ther ; 13(2): 386-98, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24344235

ABSTRACT

The hedgehog pathway has been implicated in the tumorigenesis, tumor progression, and metastasis of numerous human cancers. We generated the first fully human hedgehog antibody MEDI-5304 and characterized its antitumor activity and preclinical toxicology. MEDI-5304 bound sonic hedgehog (SHH) and Indian hedgehog (IHH) with low picomolar affinity and neutralized SHH and IHH activity in cellular mGLI1 reporter assays. The antibody inhibited transcription of hedgehog target genes and osteoblast differentiation of C3H10T1/2 cells. We evaluated the activity of MEDI-5304 in vivo in model systems that allowed us to evaluate two primary hypotheses of hedgehog function in human cancer, paracrine signaling between tumor and stromal cells and cancer stem cell (CSC) self-renewal. MEDI-5304 displayed robust pharmacodynamic effects in stromal cells that translated to antitumor efficacy as a single agent in an HT-29/MEF coimplantation model of paracrine hedgehog signaling. MEDI-5304 also improved responses to carboplatin in the HT-29/MEF model. The antibody, however, had no effect as a single agent or in combination with gemcitabine on the CSC frequency or growth of several primary pancreatic cancer explant models. These findings support the conclusion that hedgehog contributes to tumor biology via paracrine tumor-stromal signaling but not via CSC maintenance or propagation. Finally, the only safety study finding associated with MEDI-5304 was ondontodysplasia in rats. Thus, MEDI-5304 represents a potent dual hedgehog inhibitor suitable for continued development to evaluate efficacy and safety in human patients with tumors harboring elevated levels of SHH or IHH.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , Hedgehog Proteins/antagonists & inhibitors , Paracrine Communication/drug effects , Animals , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing/immunology , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , HT29 Cells , Hedgehog Proteins/immunology , Humans , Kinetics , Macaca fascicularis , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , NIH 3T3 Cells , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/metabolism , Paracrine Communication/immunology , Protein Binding/immunology , Rats, Wistar , Stromal Cells/drug effects , Stromal Cells/immunology , Stromal Cells/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays
7.
Cancer Res ; 71(3): 1029-40, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21245093

ABSTRACT

Insulin-like growth factors (IGF), IGF-I and IGF-II, are small polypeptides involved in regulating cell proliferation, survival, differentiation, and transformation. IGF activities are mediated through binding and activation of IGF-1R or insulin receptor isoform A (IR-A). The role of the IGF-1R pathway in promoting tumor growth and survival is well documented. Overexpression of IGF-II and IR-A is reported in multiple types of cancer and is proposed as a potential mechanism for cancer cells to develop resistance to IGF-1R-targeting therapy. MEDI-573 is a fully human antibody that neutralizes both IGF-I and IGF-II and inhibits IGF signaling through both the IGF-1R and IR-A pathways. Here, we show that MEDI-573 blocks the binding of IGF-I and IGF-II to IGF-1R or IR-A, leading to the inhibition of IGF-induced signaling pathways and cell proliferation. MEDI-573 significantly inhibited the in vivo growth of IGF-I- or IGF-II-driven tumors. Pharmacodynamic analysis demonstrated inhibition of IGF-1R phosphorylation in tumors in mice dosed with MEDI-573, indicating that the antitumor activity is mediated via inhibition of IGF-1R signaling pathways. Finally, MEDI-573 significantly decreased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in IGF-driven tumor models, highlighting the potential utility of (18)F-FDG-PET as a noninvasive pharmacodynamic readout for evaluating the use of MEDI-573 in the clinic. Taken together, these results demonstrate that the inhibition of IGF-I and IGF-II ligands by MEDI-573 results in potent antitumor activity and offers an effective approach to selectively target both the IGF-1R and IR-A signaling pathways.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Insulin-Like Growth Factor II/immunology , Insulin-Like Growth Factor I/immunology , Neoplasms, Experimental/drug therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cell Line , Female , Fluorodeoxyglucose F18 , Humans , Insulin-Like Growth Factor I/antagonists & inhibitors , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor II/antagonists & inhibitors , Insulin-Like Growth Factor II/metabolism , Mice , Mice, Knockout , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Neoplasms, Experimental/metabolism , Phosphorylation/drug effects , Positron-Emission Tomography , Protein Isoforms , Radiopharmaceuticals , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Receptor, Insulin/antagonists & inhibitors , Receptor, Insulin/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
8.
Mol Cancer Ther ; 8(8): 2131-41, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19671750

ABSTRACT

IPI-504 is a novel, highly soluble small-molecule inhibitor of heat shock protein 90 (Hsp90), a protein chaperone essential for regulating homeostasis of oncoproteins and cell signaling proteins. Human epidermal growth factor receptor 2 (HER2; ErbB2) oncoprotein, expressed in a subset of metastatic breast cancers, is a Hsp90 client protein. In this study, we investigated the antitumor activity and the mechanism of action of IPI-504 in HER2(+), trastuzumab-sensitive and trastuzumab-refractory cell lines in vitro and in vivo. IPI-504 exhibited potent antiproliferative activities (range of IC(50), 10-40 nmol/L) against several tumor cell lines examined, whereby mechanism of action was mediated through HER2 and Akt degradation. Both intravenous and oral administration of IPI-504 assessed in multiple schedules showed potent tumor growth inhibition in vivo with corresponding degradation of HER2. The tolerability and efficacy of IPI-504 combined with either trastuzumab or lapatinib were also investigated in HER2(+) tumor xenograft models. Combination of IPI-504 with trastuzumab significantly enhanced tumor growth delay and induced greater responses when compared with either agent alone. Although, as expected, trastuzumab alone did not exhibit any significant antitumor activity in the trastuzumab-resistant JIMT-1 model, IPI-504 administered in combination with trastuzumab yielded greater antitumor efficacy than either agent alone. Finally, combination of IPI-504 and lapatinib was well tolerated up to 50 mg/kg IPI-504 and 100 mg/kg lapatinib and resulted in significant delay in tumor growth, including partial and complete tumor responses. These lines of evidence support the development of IPI-504 in HER2-positive breast cancers as a single agent and in combination with either trastuzumab or lapatinib


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzoquinones/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/pharmacology , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized , Cell Line, Tumor , Drug Screening Assays, Antitumor , Drug Synergism , HSP90 Heat-Shock Proteins/metabolism , Humans , Lapatinib , Quinazolines/pharmacology , Receptor, ErbB-2/metabolism , Trastuzumab , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...