Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 311, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28331179

ABSTRACT

Tissue osmolarity varies among different organs and can be considerably increased under pathologic conditions. Hyperosmolarity has been associated with altered stimulatory properties of immune cells, especially macrophages and dendritic cells. We have recently reported that dendritic cells upon exposure to hypertonic stimuli shift their profile towards a macrophage-M2-like phenotype, resulting in attenuated local alloreactivity during acute kidney graft rejection. Here, we examined how hyperosmotic microenvironment affects the cross-priming capacity of dendritic cells. Using ovalbumin as model antigen, we showed that exposure of dendritic cells to hyperosmolarity strongly inhibits activation of antigen-specific T cells despite enhancement of antigen uptake, processing and presentation. We identified TRIF as key mediator of this phenomenon. Moreover, we detected a hyperosmolarity-triggered, TRIF-dependent clustering of MHCI loaded with the ovalbumin-derived epitope, but not of overall MHCI molecules, providing a possible explanation for a reduced T cell activation. Our findings identify dendritic cells as important players in hyperosmolarity-mediated immune imbalance and provide evidence for a novel pathway of inhibition of antigen specific CD8+ T cell response in a hypertonic micromilieu.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cross-Priming , Dendritic Cells/drug effects , Dendritic Cells/immunology , Osmotic Pressure , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Histocompatibility Antigens Class I/metabolism , Mice, Inbred C57BL , Ovalbumin/immunology
2.
Genom Data ; 7: 64-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26981363

ABSTRACT

Tissue-specific microenvironments shape the fate of mononuclear phagocytes [1-3]. Interstitial osmolarity is a tissue biophysical parameter which considerably modulates the phenotype and function of dendritic cells [4]. In the present report we provide a detailed description of our experimental workflow and bioinformatic analysis applied to our gene expression dataset (GSE72174), aiming to investigate the influence of different osmolarity conditions on the gene expression signature of bone marrow-derived dendritic cells. We established a cell culture system involving murine bone marrow cells, cultured under different NaCl-induced osmolarity conditions in the presence of the dendritic cell growth factor GM-CSF. Gene expression analysis was applied to mature dendritic cells (day 7) developed in different osmolarities, with and without prior stimulation with the TLR2/4 ligand LPS.

3.
Kidney Int ; 89(1): 82-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26466317

ABSTRACT

Renal dendritic cells are a major component of the renal mononuclear phagocytic system. In the renal interstitium, these cells are exposed to an osmotic gradient, mainly sodium, whose concentration progressively increases towards inner medulla. Renal allograft rejection affects predominantly the cortex, suggesting a protective role of the renal medullary micromilieu. Whether osmolar variations can modulate the function of renal dendritic cells is currently undefined. Considering the central role of dendritic cells in promoting allorejection, we tested whether the biophysical micromilieu, particularly the interstitial osmotic gradient, influences their alloreactivity. There was a progressive depletion of leukocytes towards the medulla of homeostatic kidney. Only macrophages opposed this tendency. Flow cytometry of homeostatic and post-transplant medullary dendritic cells revealed a switch towards a macrophage-like phenotype. Similarly, bone marrow-derived dendritic cells developed ex vivo in sodium chloride-enriched medium acquired a M2-like signature. Microarray analysis of allotransplant dendritic cells posed a medullary downregulation of genes mainly involved in alloantigen recognition. Gene expression profiles of both medullary dendritic cells and bone marrow-derived dendritic cells matured in hyperosmolar medium had an overlap with the macrophage M2 signature. Thus, the medullary environment inhibits an alloimmune response by modulating the phenotype and function of dendritic cells.


Subject(s)
Cellular Microenvironment , Dendritic Cells/immunology , Graft Rejection/genetics , Graft Rejection/immunology , Phenotype , Animals , Bone Marrow Cells , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/metabolism , Down-Regulation , Gene Expression Profiling , Graft Rejection/pathology , Homeostasis , Immunity, Cellular/genetics , Immunity, Cellular/immunology , Kidney Transplantation , Leukocyte Count , Macrophages , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Osmolar Concentration , Receptors, Cell Surface/metabolism , Sodium Chloride/pharmacology , Transcriptome
4.
EMBO Rep ; 16(3): 321-31, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25643708

ABSTRACT

This study proposes that the transcription factor Zeb1 modulates epithelial cell adhesion by diverting glycosphingolipid metabolism. Zeb1 promotes expression of a-series glycosphingolipids via regulating expression of GM3 synthase (St3gal5), which mechanistically involves Zeb1 binding to the St3gal5 promoter as well as suppressing microRNA-mediated repression of St3gal5. Functionally, the repression of St3gal5 suffices to elevate intercellular adhesion and expression of distinct junction-associated proteins, reminiscent of knockdown of Zeb1. Conversely, overexpressing St3gal5 sensitizes cells towards TGF-ß1-induced disruption of cell-cell interaction and partially antagonizes elevation of intercellular adhesion imposed by Zeb1 knockdown. These results highlight a direct connection of glycosphingolipid metabolism and epithelial cell adhesion via Zeb1.


Subject(s)
Cell Adhesion/physiology , Epithelial Cells/physiology , Gene Expression Regulation, Enzymologic/physiology , Glycosphingolipids/metabolism , Homeodomain Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Sialyltransferases/metabolism , Animals , Azure Stains , Gene Expression Profiling , Homeodomain Proteins/genetics , Kruppel-Like Transcription Factors/genetics , Mice , RNA, Small Interfering/genetics , Zinc Finger E-box-Binding Homeobox 1
SELECTION OF CITATIONS
SEARCH DETAIL
...