Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 7(9)2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31487889

ABSTRACT

In order to contribute to the elucidation of the biological role of carotenoids, the cellular response to hydrogen peroxide was analyzed in the red yeast R. mucilaginosa. For that, the wild strain C2.5t1, that produces ß-carotene, torulene, and torularhodin, and the albino mutant 200A6 that is incapable of producing detectable amounts of these carotenoids, were grown in the presence of increasing concentrations of hydrogen peroxide. In spite of the difference in carotenoid content, the two strains presented comparable resistance to the pro-oxidant that showed a minimum inhibitory concentration of 6 mM. When subject to 1 h treatment with 16 mM hydrogen peroxide the two strains increased catalase but not superoxide activity, suggesting that catalase plays a major role in cell protection in both the wild strain and the albino mutant. Moreover, C2.5t1 reduced its carotenoid content by about 40% upon hydrogen peroxide treatment. This reduction in carotenoids was in agreement with a significant decrease of the transcript levels of genes involved in carotenoid biosynthesis. Since an excess of ß-carotene may enhance reactive oxygen species toxicity, these results suggest that C2.5t1 modulates carotenoid content to counteract the pro-oxidant effect of hydrogen peroxide.

2.
Microbiology (Reading) ; 164(1): 78-87, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29219805

ABSTRACT

A molecular approach was applied to the study of the carotenoid biosynthetic pathway of Rhodotorula mucilaginosa. At first, functional annotation of the genome of R. mucilaginosa C2.5t1 was carried out and gene ontology categories were assigned to 4033 predicted proteins. Then, a set of genes involved in different steps of carotenogenesis was identified and those coding for phytoene desaturase, phytoene synthase/lycopene cyclase and carotenoid dioxygenase (CAR genes) proved to be clustered within a region of ~10 kb. Quantitative PCR of the genes involved in carotenoid biosynthesis showed that genes coding for 3-hydroxy-3-methylglutharyl-CoA reductase and mevalonate kinase are induced during exponential phase while no clear trend of induction was observed for phytoene synthase/lycopene cyclase and phytoene dehydrogenase encoding genes. Thus, in R. mucilaginosa the induction of genes involved in the early steps of carotenoid biosynthesis is transient and accompanies the onset of carotenoid production, while that of CAR genes does not correlate with the amount of carotenoids produced. The transcript levels of genes coding for carotenoid dioxygenase, superoxide dismutase and catalase A increased during the accumulation of carotenoids, thus suggesting the activation of a mechanism aimed at the protection of cell structures from oxidative stress during carotenoid biosynthesis. The data presented herein, besides being suitable for the elucidation of the mechanisms that underlie carotenoid biosynthesis, will contribute to boosting the biotechnological potential of this yeast by improving the outcome of further research efforts aimed at also exploring other features of interest.


Subject(s)
Biosynthetic Pathways/genetics , Carotenoids/genetics , Carotenoids/metabolism , Genes, Fungal/genetics , Multigene Family , Rhodotorula/genetics , Transcription, Genetic/genetics , Enzyme Activation/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Genome, Fungal , Kinetics , Real-Time Polymerase Chain Reaction , Rhodotorula/enzymology , Rhodotorula/growth & development , Rhodotorula/metabolism
3.
Appl Microbiol Biotechnol ; 101(7): 2931-2942, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28032192

ABSTRACT

The use of natural antimicrobials from plants, animals and microorganisms to inhibit the growth of pathogenic and spoilage microorganisms is becoming more frequent. This parallels the increased consumer interest towards consumption of minimally processed food and 'greener' food and beverage additives. Among the natural antimicrobials of microbial origin, the killer toxin produced by the yeast Tetrapisispora phaffii, known as Kpkt, appears to be a promising natural antimicrobial agent. Kpkt is a glycoprotein with ß-1,3-glucanase and killer activity, which induces ultrastructural modifications to the cell wall of yeast of the genera Kloeckera/Hanseniaspora and Zygosaccharomyces. Moreover, Kpkt maintains its killer activity in grape must for at least 14 days under winemaking conditions, thus suggesting its use against spoilage yeast in wine making and the sweet beverage industry. Here, the aim was to explore the possibility of high production of Kpkt for biotechnological exploitation. Molecular tools for heterologous production of Kpkt in Komagataella phaffii GS115 were developed, and two recombinant clones that produce up to 23 mg/L recombinant Kpkt (rKpkt) were obtained. Similar to native Kpkt, rKpkt has ß-glucanase and killer activities. Moreover, it shows a wider spectrum of action with respect to native Kpkt. This includes effects on Dekkera bruxellensis, a spoilage yeast of interest not only in wine making, but also for the biofuel industry, thus widening the potential applications of this rKpkt.


Subject(s)
Biotechnology/methods , Cytotoxins/genetics , Killer Factors, Yeast/genetics , Kluyveromyces/metabolism , Pichia/genetics , Cell Wall/drug effects , Cytotoxins/metabolism , Cytotoxins/pharmacology , Killer Factors, Yeast/metabolism , Killer Factors, Yeast/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomycetales/genetics , Saccharomycetales/metabolism , Wine/microbiology , Yeasts/drug effects , Zygosaccharomyces/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...