Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 53(25): 10655-10665, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38860528

ABSTRACT

Here we describe the synthesis of a compositional series of metal-organic framework crystalline-inorganic glass composites (MOF-CIGCs) containing ZIF-8 and an inorganic phosphate glass, 20Na2O-10NaCl-70P2O5, to expand the library of host matrices for metal-organic frameworks. By careful selection of the inorganic glass component, a relatively high loading of ZIF-8 (70 wt%) was achieved, which is the active component of the composite. A Zn⋯O-P interfacial bond, previously identified in similar composites/hybrid blends, was suggested by analysis of the total scattering pair distribution function data. Additionally, CO2 and N2 sorption and variable-temperature PXRD experiments were performed to assess the composites' properties.

2.
Chem Soc Rev ; 53(7): 3606-3629, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38426588

ABSTRACT

The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.

3.
Chem Sci ; 14(42): 11737-11748, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920351

ABSTRACT

Recently, increased attention has been focused on amorphous metal-organic frameworks (MOFs) and, more specifically, MOF glasses, the first new glass category discovered since the 1970s. In this work, we explore the fabrication of a compositional series of hybrid blends, the first example of blending a MOF and inorganic glass. We combine ZIF-62(Zn) glass and an inorganic glass, 30Na2O-70P2O5, to combine the chemical versatility of the MOF glass with the mechanical properties of the inorganic glass. We investigate the interfacial interactions between the two components using pair distribution function analysis and solid state NMR spectroscopy, and suggest potential interactions between the two phases. Thermal analysis of the blend samples indicated that they were less thermally stable than the starting materials and had a Tg shifted relative to the pristine materials. Annular dark field scanning transmission electron microscopy tomography, X-ray energy dispersive spectroscopy (EDS), nanoindentation and 31P NMR all indicated close mixing of the two phases, suggesting the formation of immiscible blends.

4.
J Am Chem Soc ; 145(42): 22913-22924, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37819708

ABSTRACT

The interface within a composite is critically important for the chemical and physical properties of these materials. However, experimental structural studies of the interfacial regions within metal-organic framework (MOF) composites are extremely challenging. Here, we provide the first example of a new MOF composite family, i.e., using an inorganic glass matrix host in place of the commonly used organic polymers. Crucially, we also decipher atom-atom interactions at the interface. In particular, we dispersed a zeolitic imidazolate framework (ZIF-8) within a phosphate glass matrix and identified interactions at the interface using several different analysis methods of pair distribution function and multinuclear multidimensional magic angle spinning nuclear magnetic resonance spectroscopy. These demonstrated glass-ZIF atom-atom correlations. Additionally, carbon dioxide uptake and stability tests were also performed to check the increment of the surface area and the stability and durability of the material in different media. This opens up possibilities for creating new composites that include the intrinsic chemical properties of the constituent MOFs and inorganic glasses.

5.
Chem Commun (Camb) ; 59(6): 732-735, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36541403

ABSTRACT

The chemistries that can be incorporated within melt-quenched zeolitic imidazolate framework (ZIF) glasses are currently limited. Here we describe the preparation of a previously unknown purine-containing ZIF which we name ZIF-UC-7. We find that it melts and forms a glass at one of the lowest temperatures reported for 3D hybrid frameworks.

6.
Chemistry ; 28(38): e202200345, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35416352

ABSTRACT

Here, we propose the combination of glassy or crystalline metal-organic frameworks (MOFs) with inorganic glasses to create novel hybrid composites and blends.The motivation behind this new composite approach is to improve the processability issues and mechanical performance of MOFs, whilst maintaining their ubiquitous properties. Herein, the precepts of successful composite formation and pairing of MOF and glass MOFs with inorganic glasses are presented. Focus is also given to the synthetic routes to such materials and the challenges anticipated in both their production and characterisation. Depending on their chemical nature, materials are classified as crystalline MOF-glass composites and blends. Additionally, the potential properties and applications of these two classes of materials are considered, the key aim being the retention of beneficial properties of both components, whilst circumventing their respective drawbacks.

7.
Chem Commun (Camb) ; 58(24): 3949-3952, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35244661

ABSTRACT

Here we present efficient and scalable mechanochemical formation of hybrid organic-inorganic perovskites of the form [TPrA][M(dca)3] (M = Mn2+, Co2+) and the subsequent formation of their bulk melt-quenched glasses. In situ X-ray diffraction reveals direct, facile, and almost instantaneouos formation of both crystalline materials, while slow cooling limits recrystallisation in glasses. The glasses show good stability to acidic and basic aqueous solutions and display higher carbon dioxide uptakes than their crystalline precursors.

SELECTION OF CITATIONS
SEARCH DETAIL
...