Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 853, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32051401

ABSTRACT

Although immune checkpoint inhibitors (ICIs) have achieved unprecedented results in melanoma, the biological features of the durable responses initiated by these drugs remain unknown. Here we show the genetic and phenotypic changes induced by treatment with programmed cell death-1 (PD-1) blockade in a genetically engineered mouse model of melanoma driven by oncogenic BRAF. In this controlled system anti-PD-1 treatment yields responses in ~35% of the tumors, and prolongs survival in ~27% of the animals. We identify increased stroma remodeling and reduced expression of proliferation markers as features associated with prolonged response. These traits are corroborated in two independent early on-treatment anti-PD-1 melanoma patient cohorts. These insights into the biological responses of tumors to ICI provide a strategy for identification of durable response early during the course of treatment and could improve patient stratification for checkpoint inhibitory drugs.


Subject(s)
Cell Division/physiology , Melanoma/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Stromal Cells/metabolism , Animals , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Proliferation , Disease Models, Animal , Exome/genetics , Female , Humans , Immunotherapy , Mice
2.
Br J Pharmacol ; 176(3): 436-450, 2019 02.
Article in English | MEDLINE | ID: mdl-30427531

ABSTRACT

BACKGROUND AND PURPOSE: Small cell lung cancer (SCLC) is an aggressive disease with median survival of <2 years. Tumour biopsies for research are scarce, especially from extensive-stage patients, with repeat sampling at disease progression rarely performed. We overcame this limitation for relevant preclinical models by developing SCLC circulating tumour cell derived explants (CDX), which mimic the donor tumour pathology and chemotherapy response. To facilitate compound screening and identification of clinically relevant biomarkers, we developed short-term ex vivo cultures of CDX tumour cells. EXPERIMENTAL APPROACH: CDX tumours were disaggregated, and the human tumour cells derived were cultured for a maximum of 5 weeks. Phenotypic, transcriptomic and pharmacological characterization of these cells was performed. KEY RESULTS: CDX cultures maintained a neuroendocrine phenotype, and most changes in the expression of protein-coding genes observed in cultures, for up to 4 weeks, were reversible when the cells were re-implanted in vivo. Moreover, the CDX cultures exhibited a similar sensitivity to chemotherapy compared to the corresponding CDX tumour in vivo and were able to predict in vivo responses to therapeutic candidates. CONCLUSIONS AND IMPLICATIONS: Short-term cultures of CDX provide a tractable platform to screen new treatments, identify predictive and pharmacodynamic biomarkers and investigate mechanisms of resistance to better understand the progression of this recalcitrant tumour.


Subject(s)
Antineoplastic Agents/pharmacology , Indazoles/pharmacology , Lung Neoplasms/drug therapy , Neoplastic Cells, Circulating/drug effects , Small Cell Lung Carcinoma/drug therapy , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Humans , Indazoles/chemistry , Lung Neoplasms/pathology , Mice , Mice, Inbred Strains , Mice, SCID , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplastic Cells, Circulating/pathology , Small Cell Lung Carcinoma/pathology , Structure-Activity Relationship , Sulfonamides/chemistry , Tumor Cells, Cultured
3.
Nat Commun ; 7: 13322, 2016 11 09.
Article in English | MEDLINE | ID: mdl-27827359

ABSTRACT

Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (P<0.025). VM vessels are also observed in 9/10 CTC patient-derived explants (CDX), where molecular analysis of fractionated VE-cadherin-positive cells uncovered copy-number alterations and mutated TP53, confirming human tumour origin. VE-cadherin is required for VM in NCI-H446 SCLC xenografts, where VM decreases tumour latency and, despite increased cisplatin intra-tumour delivery, decreases cisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention.


Subject(s)
DNA Copy Number Variations , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neovascularization, Pathologic/pathology , Small Cell Lung Carcinoma/pathology , Animals , Antigens, CD/metabolism , Biopsy , Cadherins/metabolism , Cell Line, Tumor , Cohort Studies , Female , Humans , Keratins/metabolism , Lung/pathology , Lung Neoplasms/blood supply , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Male , Mice , Middle Aged , Mutation , Neovascularization, Pathologic/genetics , Single-Cell Analysis , Small Cell Lung Carcinoma/blood supply , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/mortality , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...