Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Malar J ; 23(1): 155, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769514

ABSTRACT

BACKGROUND: Cameroon is one of the countries with the highest burden of malaria. Since 2018, there has been an ongoing conflict in the country, which has reduced access to healthcare for populations in affected regions, and little is known about the impact on access to malaria services. The objective of this study was to understand the current situation regarding access to malaria services in Cameroon to inform the design of interventions to remove barriers and encourage the use of available services. METHODS: A qualitative research study was carried out to understand the barriers preventing communities accessing care, the uptake of community health worker (CHW) services, and to gather perceptions on community engagement approaches, to assess whether these could be an appropriate mechanism to encourage uptake of community health worker (CHW) services. Twenty-nine focus group discussions and 11 in-depth interviews were carried out between May and July 2021 in two regions of Cameroon, Southwest and Littoral. Focus group discussions were held with CHWs and community members and semi-structured, in-depth interviews were conducted with key stakeholders including regional government staff, council staff, community leaders and community-based organisations. The data were analysed thematically; open, descriptive coding was combined with exploration of pre-determined investigative areas. RESULTS: The study confirmed that access to healthcare has become increasingly challenging in conflict-affected areas. Although the Ministry of Health are providing CHWs to improve access, several barriers remain that limit uptake of these services including awareness, availability, cost, trust in competency, and supply of testing and treatment. This study found that communities were supportive of community engagement approaches, particularly the community dialogue approach. CONCLUSION: Communities in conflict-affected regions of Cameroon continue to have limited access to healthcare services, in part due to poor use of CHW services provided. Community engagement approaches can be an effective way to improve the awareness and use of CHWs. However, these approaches alone will not be sufficient to resolve all the challenges faced by conflict-affected communities when accessing health and malaria services. Additional interventions are needed to increase the availability of CHWs, improve the supply of diagnostic tests and treatments and to reduce the cost of treatment for all.


Subject(s)
Health Services Accessibility , Malaria , Qualitative Research , Cameroon , Malaria/prevention & control , Humans , Health Services Accessibility/statistics & numerical data , Community Health Workers/statistics & numerical data , Focus Groups , Community Participation/statistics & numerical data , Male , Female , Adult
2.
Malar J ; 23(1): 39, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308288

ABSTRACT

BACKGROUND: Seasonal Malaria Chemoprevention (SMC) is a highly effective intervention for preventing malaria, particularly in areas with highly seasonal transmission. Monitoring and evaluating (M&E) SMC programmes are complex due to the scale, time-sensitive delivery of the programme, and influence of external factors. This paper describes the process followed to develop a comprehensive M&E framework tailored specifically for the SMC context. METHODS: The Framework was developed through a literature and programme review, and stakeholder dialogues across three implementing countries-Burkina Faso, Chad, and Nigeria. Expert consultation further refined the Framework through an iterative approach drawing upon data collected through the three sources. The Framework was designed using the Logical Framework Approach incorporating external factors and intentionally aligned with global malaria M&E standards. RESULTS: An overall aim and seven programme objectives were developed measured by 70 indicators. The indicators also capture the causal links between the implementation and results of the programme. The Framework leverages the use of current data sources and existing mechanisms, ensuring efficient data use without requiring a significant increase in resources for overall programme optimization. It also promotes the use of data triangulation, and stratification for a more nuanced understanding of factors affecting programme performance and timely data informed decision-making. CONCLUSIONS: The SMC M&E Framework presented here provides a standardized approach for programme implementers to enhance decision-making for optimal programme performance. This is an essential tool as the scope of SMC programmes expands to new geographies and target age groups.


Subject(s)
Antimalarials , Malaria , Humans , Infant , Seasons , Burkina Faso , Nigeria , Chemoprevention , Antimalarials/therapeutic use
4.
Spat Spatiotemporal Epidemiol ; 41: 100357, 2022 06.
Article in English | MEDLINE | ID: mdl-35691633

ABSTRACT

Maps of disease burden are a core tool needed for the control and elimination of malaria. Reliable routine surveillance data of malaria incidence, typically aggregated to administrative units, is becoming more widely available. Disaggregation regression is an important model framework for estimating high resolution risk maps from aggregated data. However, the aggregation of incidence over large, heterogeneous areas means that these data are underpowered for estimating complex, non-linear models. In contrast, prevalence point-surveys are directly linked to local environmental conditions but are not common in many areas of the world. Here, we train multiple non-linear, machine learning models on Plasmodium falciparum prevalence point-surveys. We then ensemble the predictions from these machine learning models with a disaggregation regression model that uses aggregated malaria incidences as response data. We find that using a disaggregation regression model to combine predictions from machine learning models improves model accuracy relative to a baseline model.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Incidence , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Nonlinear Dynamics , Prevalence
5.
Nat Commun ; 12(1): 3589, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117240

ABSTRACT

Insecticide-treated nets (ITNs) are one of the most widespread and impactful malaria interventions in Africa, yet a spatially-resolved time series of ITN coverage has never been published. Using data from multiple sources, we generate high-resolution maps of ITN access, use, and nets-per-capita annually from 2000 to 2020 across the 40 highest-burden African countries. Our findings support several existing hypotheses: that use is high among those with access, that nets are discarded more quickly than official policy presumes, and that effectively distributing nets grows more difficult as coverage increases. The primary driving factors behind these findings are most likely strong cultural and social messaging around the importance of net use, low physical net durability, and a mixture of inherent commodity distribution challenges and less-than-optimal net allocation policies, respectively. These results can inform both policy decisions and downstream malaria analyses.


Subject(s)
Benchmarking/methods , Insecticide-Treated Bednets , Insecticides , Malaria/prevention & control , Africa , Communicable Disease Control/methods , Computational Biology , Humans , Life Style , Malaria/epidemiology , Mosquito Control/methods
6.
Lancet Infect Dis ; 21(1): 59-69, 2021 01.
Article in English | MEDLINE | ID: mdl-32971006

ABSTRACT

BACKGROUND: Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS: Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS: We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing routine ITN distributions by 25%-75% also increased malaria burden to a total of 230·5 (151·6-343·3) million cases and 411·7 (322·8-545·5) thousand deaths with a 25% reduction; 232·8 (152·3-345·9) million cases and 415·5 (324·3-549·4) thousand deaths with a 50% reduction; and 234·0 (152·9-348·4) million cases and 417·6 (325·5-553·1) thousand deaths with a 75% reduction. When ITN coverage and antimalarial drug coverage were synchronously reduced, malaria burden increased to 240·5 (156·5-358·2) million cases and 520·9 (404·1-691·9) thousand deaths with a 25% reduction; 251·0 (162·2-377·0) million cases and 640·2 (492·0-856·7) thousand deaths with a 50% reduction; and 261·6 (167·7-396·8) million cases and 768·6 (586·1-1038·7) thousand deaths with a 75% reduction. INTERPRETATION: Under pessimistic scenarios, COVID-19-related disruption to malaria control in Africa could almost double malaria mortality in 2020, and potentially lead to even greater increases in subsequent years. To avoid a reversal of two decades of progress against malaria, averting this public health disaster must remain an integrated priority alongside the response to COVID-19. FUNDING: Bill and Melinda Gates Foundation; Channel 7 Telethon Trust, Western Australia.


Subject(s)
COVID-19/epidemiology , Malaria/epidemiology , Malaria/mortality , SARS-CoV-2 , Africa/epidemiology , Antimalarials/therapeutic use , Bayes Theorem , Humans , Incidence , Insecticide-Treated Bednets , Malaria/drug therapy , Malaria/prevention & control , Models, Statistical , Morbidity
7.
Sci Rep ; 10(1): 18129, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093622

ABSTRACT

Malaria transmission in Madagascar is highly heterogeneous, exhibiting spatial, seasonal and long-term trends. Previous efforts to map malaria risk in Madagascar used prevalence data from Malaria Indicator Surveys. These cross-sectional surveys, conducted during the high transmission season most recently in 2013 and 2016, provide nationally representative prevalence data but cover relatively short time frames. Conversely, monthly case data are collected at health facilities but suffer from biases, including incomplete reporting and low rates of treatment seeking. We combined survey and case data to make monthly maps of prevalence between 2013 and 2016. Health facility catchment populations were estimated to produce incidence rates from the case data. Smoothed incidence surfaces, environmental and socioeconomic covariates, and survey data informed a Bayesian prevalence model, in which a flexible incidence-to-prevalence relationship was learned. Modelled spatial trends were consistent over time, with highest prevalence in the coastal regions and low prevalence in the highlands and desert south. Prevalence was lowest in 2014 and peaked in 2015 and seasonality was widely observed, including in some lower transmission regions. These trends highlight the utility of monthly prevalence estimates over the four year period. By combining survey and case data using this two-step modelling approach, we were able to take advantage of the relative strengths of each metric while accounting for potential bias in the case data. Similar modelling approaches combining large datasets of different malaria metrics may be applicable across sub-Saharan Africa.


Subject(s)
Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/isolation & purification , Population Surveillance , Spatio-Temporal Analysis , Bayes Theorem , Cross-Sectional Studies , Health Surveys , Humans , Madagascar/epidemiology , Malaria, Falciparum/parasitology , Prevalence
8.
Malar J ; 19(1): 374, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081784

ABSTRACT

BACKGROUND: Anti-malarial drugs play a critical role in reducing malaria morbidity and mortality, but their role is mediated by their effectiveness. Effectiveness is defined as the probability that an anti-malarial drug will successfully treat an individual infected with malaria parasites under routine health care delivery system. Anti-malarial drug effectiveness (AmE) is influenced by drug resistance, drug quality, health system quality, and patient adherence to drug use; its influence on malaria burden varies through space and time. METHODS: This study uses data from 232 efficacy trials comprised of 86,776 infected individuals to estimate the artemisinin-based and non-artemisinin-based AmE for treating falciparum malaria between 1991 and 2019. Bayesian spatiotemporal models were fitted and used to predict effectiveness at the pixel-level (5 km × 5 km). The median and interquartile ranges (IQR) of AmE are presented for all malaria-endemic countries. RESULTS: The global effectiveness of artemisinin-based drugs was 67.4% (IQR: 33.3-75.8), 70.1% (43.6-76.0) and 71.8% (46.9-76.4) for the 1991-2000, 2006-2010, and 2016-2019 periods, respectively. Countries in central Africa, a few in South America, and in the Asian region faced the challenge of lower effectiveness of artemisinin-based anti-malarials. However, improvements were seen after 2016, leaving only a few hotspots in Southeast Asia where resistance to artemisinin and partner drugs is currently problematic and in the central Africa where socio-demographic challenges limit effectiveness. The use of artemisinin-based combination therapy (ACT) with a competent partner drug and having multiple ACT as first-line treatment choice sustained high levels of effectiveness. High levels of access to healthcare, human resource capacity, education, and proximity to cities were associated with increased effectiveness. Effectiveness of non-artemisinin-based drugs was much lower than that of artemisinin-based with no improvement over time: 52.3% (17.9-74.9) for 1991-2000 and 55.5% (27.1-73.4) for 2011-2015. Overall, AmE for artemisinin-based and non-artemisinin-based drugs were, respectively, 29.6 and 36% below clinical efficacy as measured in anti-malarial drug trials. CONCLUSIONS: This study provides evidence that health system performance, drug quality and patient adherence influence the effectiveness of anti-malarials used in treating uncomplicated falciparum malaria. These results provide guidance to countries' treatment practises and are critical inputs for malaria prevalence and incidence models used to estimate national level malaria burden.


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Humans
9.
Malar J ; 18(1): 195, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31186004

ABSTRACT

BACKGROUND: The disease burden of Plasmodium falciparum malaria illness is generally estimated using one of two distinct approaches: either by transforming P. falciparum infection prevalence estimates into incidence estimates using conversion formulae; or through adjustment of counts of recorded P. falciparum-positive fever cases from clinics. Whilst both ostensibly seek to evaluate P. falciparum disease burden, there is an implicit and problematic difference in the metric being estimated. The first enumerates only symptomatic malaria cases, while the second enumerates all febrile episodes coincident with a P. falciparum infection, regardless of the fever's underlying cause. METHODS: Here, a novel approach was used to triangulate community-based data sources capturing P. falciparum infection, fever, and care-seeking to estimate the fraction of P. falciparum-positive fevers amongst children under 5 years of age presenting at health facilities that are attributable to P. falciparum infection versus other non-malarial causes. A Bayesian hierarchical model was used to assign probabilities of malaria-attributable fever (MAF) and non-malarial febrile illness (NMFI) to children under five from a dataset of 41 surveys from 21 countries in sub-Saharan Africa conducted between 2006 and 2016. Using subsequent treatment-seeking outcomes, the proportion of MAF and NMFI amongst P. falciparum-positive febrile children presenting at public clinics was estimated. RESULTS: Across all surveyed malaria-positive febrile children who sought care at public clinics across 41 country-years in sub-Saharan Africa, P. falciparum infection was estimated to be the underlying cause of only 37.7% (31.1-45.4, 95% CrI) of P. falciparum-positive fevers, with significant geographical and temporal heterogeneity between surveys. CONCLUSIONS: These findings highlight the complex nature of the P. falciparum burden amongst children under 5 years of age and indicate that for many children presenting at health clinics, a positive P. falciparum diagnosis and a fever does not necessarily mean P. falciparum is the underlying cause of the child's symptoms, and thus other causes of illness should always be investigated, in addition to prescribing an effective anti-malarial medication. In addition to providing new large-scale estimates of malaria-attributable fever prevalence, the results presented here improve comparability between different methods for calculating P. falciparum disease burden, with significant implications for national and global estimation of malaria burden.


Subject(s)
Coinfection/epidemiology , Cost of Illness , Fever/epidemiology , Malaria, Falciparum/complications , Africa South of the Sahara/epidemiology , Child, Preschool , Epidemiologic Methods , Health Facilities , Humans , Infant , Infant, Newborn , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...