Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 23(13): 3730-3740, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949758

ABSTRACT

LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.


Subject(s)
Evolution, Molecular , Long Interspersed Nucleotide Elements/genetics , Ovarian Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , DNA Methylation , Drug Resistance, Neoplasm , Female , Gene Expression Regulation, Neoplastic , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Loss of Heterozygosity/genetics , Mutagenesis, Insertional , Mutation , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
2.
Br J Cancer ; 114(4): 417-26, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26882065

ABSTRACT

BACKGROUND: Development of targeted therapies for high-grade serous ovarian cancer (HGSC) remains challenging, as contributing molecular pathways are poorly defined or expressed heterogeneously. CUB-domain containing protein 1 (CDCP1) is a cell-surface protein elevated in lung, colorectal, pancreas, renal and clear cell ovarian cancer. METHODS: CUB-domain containing protein 1 was examined by immunohistochemistry in HGSC and fallopian tube. The impact of targeting CDCP1 on cell growth and migration in vitro, and intraperitoneal xenograft growth in mice was examined. Three patient-derived xenograft (PDX) mouse models were developed and characterised for CDCP1 expression. The effect of a monoclonal anti-CDCP1 antibody on PDX growth was examined. Src activation was assessed by western blot analysis. RESULTS: Elevated CDCP1 was observed in 77% of HGSC cases. Silencing of CDCP1 reduced migration and non-adherent cell growth in vitro and tumour burden in vivo. Expression of CDCP1 in patient samples was maintained in PDX models. Antibody blockade of CDCP1 significantly reduced growth of an HGSC PDX. The CDCP1-mediated activation of Src was observed in cultured cells and mouse xenografts. CONCLUSIONS: CUB-domain containing protein 1 is over-expressed by the majority of HGSCs. In vitro and mouse model data indicate that CDCP1 has a role in HGSC and that it can be targeted to inhibit progression of this cancer.


Subject(s)
Antigens, CD/metabolism , Cell Adhesion Molecules/metabolism , Cystadenocarcinoma, Serous/pathology , Neoplasm Proteins/metabolism , Ovarian Neoplasms/pathology , Animals , Antigens, CD/genetics , Antigens, Neoplasm , Biomarkers, Tumor/metabolism , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Cystadenocarcinoma, Serous/metabolism , Disease Models, Animal , Female , Heterografts , Humans , Mice , Neoplasm Grading , Neoplasm Proteins/genetics , Ovarian Neoplasms/metabolism , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...