Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(21)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38047507

ABSTRACT

The aim of this study is to suggest a novel approach for estimating the intramolecular mobility of a charge carrier that migrates within a polymer chain and is involved in a pair reaction with a particle located on the same chain. The approach is based on the effect of an external electric field on the migration rate and, consequently, the kinetics of the reaction. As a first step, this problem is considered a stochastic one-step process with absorbing and reflecting boundaries, and an analytical solution is obtained in the case that the second reactant is immobile. With the use of computer simulations of stochastic migration, the effect of the mobility of both reactants and the influence of the Coulomb interaction between them are considered. It is found that the ratio of the pair reaction rates with and without an external field is relatively little dependent on these factors and that the analytical expressions derived can be applied to estimate the relative mobility of recombining particles with accuracy better than a factor of two in many realistic situations.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38149738

ABSTRACT

This study looked for a way to evaluate the validity of previously suggested models for describing the spin-selective recombination of radical pairs. As an example, for analysis, we used the conventional model, the model by Jones and Hore [Chem. Phys. Lett. 488, 90 (2010)], and the model by Salikhov [Am. J. Phys. Chem. 11, 67 (2022)]. To do this, analytical solutions to the evolution of the radical pair density matrix due to a radical pair's spin-selective recombination and singlet-triplet transitions in a strong magnetic field were obtained for the conventional model and the Jones and Hore model. Spin interactions included in the Hamiltonian were time-independent exchange interactions as well as Zeeman and hyperfine interactions. The most striking difference between the models' predictions appeared when considering the fraction of singlet pairs among all currently existing ones. In the Jones and Hore model, this ratio has the form of damped oscillations for any values of the spin-hamiltonian parameters. The conventional model and the Salikhov model both predicted that this ratio had the form of undamped oscillations in the absence of exchange interaction and at a sufficiently low recombination rate. Besides, the conventional model predicts the possibility of a resonance-like behavior of this ratio when singlet-triplet transitions in a part of the radical pair ensemble are completely suppressed by tuning the magnetic field strength. Possible experimental conditions in which distinguishing between the models seems to be most straightforward were suggested.

SELECTION OF CITATIONS
SEARCH DETAIL
...