Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Transplant Proc ; 42(7): 2753-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20832581

ABSTRACT

Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSC) facilitate the engraftment of human (h) hematopoietic stem cells when transplanted simultaneously in animal and human studies. However, the type of MSCs that preferentially enhance the engraftment of HSCs is unknown. Recent studies have shown that MSCs derived from a single source are heterogeneous in terms of cell size, morphology, proliferation rate, and differentiation potential. This study was designed to investigate the properties of UCB-MSCs, which influence the engraftment of hHSCs in a NOD/SCID mouse model. We categorized MSCs as being the most effective (UCB-352 MSCs) or the least effective (UCB-156 MSCs) at promoting the homing and engraftment of HSCs, and compared the characteristics of these 2 MSC populations. We observed that the 2 populations showed differences in characteristics typical of immature MSCs, and related to proliferation potential. We showed that UCB-352 MSCs, which proliferate quickly, preferentially enhanced the engraftment of HSCs in NOD/SCID mice. In addition, we observed differences in the pattern of both PODXL and Oct4 expression, and in the levels of cytokines such as SDF-1 and SCF using flow cytometry and membrane arrays. The more effective UCB-352 MSCs expressed higher levels of PODXL and Oct4, which were associated with immaturity, than did the UCB-156 MSCs. Furthermore, UCB-352 cells secreted greater levels of SDF-1 and SCF, both of which are required for hematopoiesis. We propose that the proliferation potential of UCB-MSCs, coupled with their immature characteristics, may serve as a novel standard to promote the homing and engraftment of HSCs.


Subject(s)
Hematopoietic Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mice, Inbred NOD/surgery , Mice, SCID/surgery , Adenosine Triphosphate/analysis , Animals , Cell Division , Cytokines/analysis , Delivery, Obstetric , Fetal Blood/cytology , Humans , Mesenchymal Stem Cells/physiology , Mice , Transplantation, Heterologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...