Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 86(3): 375-381, 2019 09.
Article in English | MEDLINE | ID: mdl-31112990

ABSTRACT

BACKGROUND: Cardiovascular (CV) complications are the most significant cause of mortality in adults with Cushing disease (CD); little is known about CV risk factors in children with CD. Measurement of lipoprotein particles by nuclear magnetic resonance (NMR) spectroscopy is a novel technology to assess CV risk. The objective of the current study is to analyze the NMR lipid profile in pediatric CD patients before and 1 year after remission. METHODS: NMR lipid profile was obtained via the Vantera NMR analyzer, using frozen serum samples from 33 CD patients (mean age 13.8 ± 4.0 years) evaluated between 1997 and 2017 at the National Institutes of Health (NIH) Clinical Center (CC). RESULTS: GlycA (glycosylated acute-phase proteins), triglyceride-rich particles (TRLP medium and very small sizes), low-density lipoprotein (LDL) particles (LDLP total and large size), high-density lipoprotein (HDL) particles (HDLP total, medium and small sizes), total cholesterol, LDL-cholesterol, HDL-cholesterol, GlycA inflammatory biomarker, and apolipoprotein B and apolipoprotein A1 (ApoA1) concentrations showed statistically significant changes after remission of CD (p < 0.05). CONCLUSION: In our study population, most of the lipid variables improved post-CD remission, with the exception of HDL and ApoA1, indicating that NMR lipoprotein profile may be a helpful tool in assessing the CV risk in pediatric patients with CD.


Subject(s)
Cardiovascular Diseases/diagnosis , Lipoproteins/blood , Pituitary ACTH Hypersecretion/blood , Adolescent , Apolipoprotein A-I/blood , Apolipoproteins B/blood , Cardiovascular Diseases/complications , Child , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Female , Glycosylation , Humans , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Magnetic Resonance Spectroscopy , Male , Pituitary ACTH Hypersecretion/complications , Remission Induction , Risk Factors , Triglycerides/metabolism
2.
Nat Microbiol ; 4(4): 663-674, 2019 04.
Article in English | MEDLINE | ID: mdl-30742071

ABSTRACT

Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.


Subject(s)
Cell-Free Nucleic Acids/genetics , Communicable Diseases/diagnosis , High-Throughput Nucleotide Sequencing/methods , Cohort Studies , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/virology , DNA, Bacterial/genetics , DNA, Fungal/genetics , DNA, Viral/genetics , Humans , Sepsis/diagnosis , Sepsis/microbiology
3.
PLoS Pathog ; 10(3): e1003988, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24626328

ABSTRACT

Eosinophil responses typify both allergic and parasitic helminth disease. In helminthic disease, the role of eosinophils can be both protective in immune responses and destructive in pathological responses. To investigate whether eosinophils are involved in both protection and pathology during filarial nematode infection, we explored the role of eosinophils and their granule proteins, eosinophil peroxidase (EPO) and major basic protein-1 (MBP-1), during infection with Brugia malayi microfilariae. Using eosinophil-deficient mice (PHIL), we further clarify the role of eosinophils in clearance of microfilariae during primary, but not challenge infection in vivo. Deletion of EPO or MBP-1 alone was insufficient to abrogate parasite clearance suggesting that either these molecules are redundant or eosinophils act indirectly in parasite clearance via augmentation of other protective responses. Absence of eosinophils increased mast cell recruitment, but not other cell types, into the broncho-alveolar lavage fluid during challenge infection. In addition absence of eosinophils or EPO alone, augmented parasite-induced IgE responses, as measured by ELISA, demonstrating that eosinophils are involved in regulation of IgE. Whole body plethysmography indicated that nematode-induced changes in airway physiology were reduced in challenge infection in the absence of eosinophils and also during primary infection in the absence of EPO alone. However lack of eosinophils or MBP-1 actually increased goblet cell mucus production. We did not find any major differences in cytokine responses in the absence of eosinophils, EPO or MBP-1. These results reveal that eosinophils actively participate in regulation of IgE and goblet cell mucus production via granule secretion during nematode-induced pathology and highlight their importance both as effector cells, as damage-inducing cells and as supervisory cells that shape both innate and adaptive immunity.


Subject(s)
Eosinophils/immunology , Filariasis/immunology , Filariasis/pathology , Microfilariae/immunology , Animals , Brugia malayi/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...