Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
ChemNanoMat ; 8(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35757180

ABSTRACT

Cerium oxide nanoparticles (ceria NPs) have been widely used in many industrial applications. They have been proposed as a potential remedy for reducing oxidative stress in biological systems. General concerns over the toxicity of engineered ceria NPs have led to studies of their phytotoxicity in plants. Most of these plant growth studies were conducted in soil using grain crops and commercial ceria NPs of sizes from 6 nm to 100's nm. In this paper, we report our evaluation of the phytotoxicity and uptake of sub-3-nm crystalline ceria NPs by exposing Daikon radish (Raphanus sativus var. longipinnatus) microgreens to these NPs with environmentally relevant concentrations under hydroponic growth conditions. Aqueous suspensions of different concentrations of these ceria NPs (0.1 ppm, 1 ppm, and 10 ppm) were applied to these microgreens for the last 7 days of the 12-day growth period. Our results revealed the uptake of cerium by plant roots and the translocation of cerium to the stems and the cotyledons (seed leaves). The accumulation of cerium was found to be maximum at the roots, followed by the cotyledons and the stems of the plants. Even at the lowest concentration (0.1 ppm) of the sub-3-nm ceria NPs, the accumulation of cerium at the roots significantly stunted the root growth. However, these NP treatments did not show significant changes to the distributions of macro-minerals (Mg, K, and Ca) and micro-minerals (Zn and Cu) in the microgreens at the end of the 12-day growth period. The phytotoxic effect of sub-3-nm crystalline ceria nanoparticles on the hydroponic growth of Daikon radish microgreens was studied. The cerium uptake by the plant and its effect on the bioavailability of major macro-minerals and micro-minerals within the plant were examined.

2.
Phys Chem Chem Phys ; 23(30): 16150-16156, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34297026

ABSTRACT

CeO2-Catalyzed esterification of CO2, a well-known greenhouse gas, with methanol has been widely recognized as a promising alternative method to produce dimethyl carbonate (DMC). Herein, we performed a comprehensive study of catalytic mechanisms underlying the formation of DMC from CO2 and methanol on both stoichiometric and reduced CeO2(111) and (110) surfaces. To this end, the saddle-point searching algorithm is employed. Specifically, using the monomethyl carbonate (MMC) as the key intermediate, a three-step Langmuir-Hinshelwood (LH) mechanism, including the formation and esterification of monomethyl carbonate and removal of water molecule, is identified for the catalytic DMC formation on either the reduced or the stoichiometric CeO2(111) and (110) surfaces. For both CeO2(111) and (110) surfaces, our study indicates that the presence of oxygen vacancies can markedly lower the activation energy barrier. Different rate-limiting steps are identified, however, for the reduced CeO2(111) and (110) surfaces. Successful identification of the rate-limiting step and the associated active CO2 species will provide atomic-level guidance on selection of metal-oxide-based catalysts toward direct synthesis of DMC from the green-house gas CO2 and methanol.

3.
Nanoscale ; 13(16): 7447-7470, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33876814

ABSTRACT

Gas hydrates (clathrate hydrates, clathrates, or hydrates) are crystalline inclusion compounds composed of water and gas molecules. Methane hydrates, the most well-known gas hydrates, are considered a menace in flow assurance. However, they have also been hailed as an alternative energy resource because of their high methane storage capacity. Since the formation of gas hydrates generally requires extreme conditions, developing porous material hosts to synthesize gas hydrates with less-demanding constraints is a topic of great interest to the materials and energy science communities. Though reports of modeling and experimental analysis of bulk gas hydrates are plentiful in the literature, reliable phase data for gas hydrates within confined spaces of nanoporous media have been sporadic. This review examines recent studies of both experiments and theoretical modeling of gas hydrates within four categories of nanoporous material hosts that include porous carbons, metal-organic frameworks, graphene nanoslits, and carbon nanotubes. We identify challenges associated with these porous systems and discuss the prospects of gas hydrates in confined space for potential applications.

4.
RSC Adv ; 10(35): 20515-20520, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517735

ABSTRACT

Recent increasing uses of ceria in research and industrial applications have fostered continuing developments of efficient routes to synthesize the material. Here we report our investigation of the effects and the mechanistic roles of lithium acetate to accelerate the growth of crystalline ceria nanoparticles in ozone-mediated synthesis. By increasing the mole ratio of the acetate to cerium nitrate in the reactions, the reaction yields of ceria nanoparticles were observed to increase from ca. 10% to up to over 90% by cerium content in 30 min reactions. Microscopy images and Raman spectra of the as-synthesized nanoparticles revealed that increasing the acetate additions led to a decrease in average particle size and size range but an increase in crystallinity. Through analyzing the organic by-products in the reaction mixtures, the acetate was inferred to base-catalyze the formation of acetals and cerium complexes and accelerate the formation of Ce-O-Ce bonds and hence the growth of ceria nanoparticles through alcohol-like condensation reactions.

5.
Nanoscale ; 11(10): 4552-4561, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30806412

ABSTRACT

Reactive oxygen species (ROS) are powerful oxidants generated in both biological systems and natural environments. Though enzyme-mimic activity and Fenton-like reactions have been postulated to explain how ceria nanoparticles and ROS are involved in the catalytic decomposition of hydrogen peroxide (H2O2), the corresponding reaction kinetics for this reaction have not yet been completely resolved. Here we present our investigation of the structure-activity relationship of ceria nanostructures for the generation of hydroxyl radicals through the catalytic decomposition of H2O2. Different nanostructured ceria including nanorods (NR), nanocubes (NC), and nanooctahedra (NO), together with commercial ceria, were examined to elucidate the relationship between the morphology and reaction kinetics. The initial relative production rates of hydroxyl radicals over different ceria nanostructures were determined using fluorescence measurements and were applied to obtain the apparent activation energy for their intrinsic activity comparisons. The activity trend of the order: ceria NR > ceria NC > ceria NO > commercial ceria was observed. This trend was rationalized and assessed using activity descriptive factors including the intensity ratio of Raman bands of vibration modes due to atomic defects, the percentage of surface Ce3+ content, and the average coordination number of oxygen anions surrounding each cerium cation in the ceria samples.

6.
RSC Adv ; 9(41): 23780-23784, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530633

ABSTRACT

We report the growth of carbon dioxide (CO2) whiskers at low temperatures (-70 °C to -65 °C) and moderate pressure (4.4 to 1.0 bar). Their axial growth was assessed by optical video analysis. The identities of these whiskers were confirmed as CO2 solids by Raman spectroscopy. A vapor-solid growth mechanism was proposed based on the influence of the relative humidity on the growth.

7.
Nanoscale ; 10(21): 9822-9829, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29770828

ABSTRACT

We report a rapid, room temperature methodology to synthesize fluorite-structured ceria nanoparticles using cerium(iii) salts and ozone in the presence of short chain primary, secondary, and tertiary alcohols. This simple technique produced nanoparticles with higher oxygen vacancy compared to that of bulk ceria.

8.
Data Brief ; 16: 667-684, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29541664

ABSTRACT

The Crystallographic data of the α-DIPAB sample was measured using powder X-ray diffraction (PXRD). The crystal structure was also optimized using density functional based method. The calculations were performed both including van der Waals (vdW) interactions and excluding them to quantify the effects of vdW interaction on the crystal formation. The vibrational modes of DIPAB crystal corresponding to the Bromine deficient samples are calculated and presented. These show the origin of drastic change in dielectric response in Br deficient samples as compared to the ideal stoichiometric DIPAB crystal (Alsaad et al. 2018) [4]. Optical properties of an idealα-DIPAB were calculated using GGA and HSE06 hybrid functional methods implemented in VASP package. We mainly calculated the real and imaginary parts of the frequency-dependent linear dielectric function, as well as the related quantities such as the absorption, reflectivity, energy-loss function, and refractive index of α-DIPAB in the energy window of (0-12) eV.

9.
J Sep Sci ; 39(23): 4484-4491, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27704708

ABSTRACT

An ion-moderated partition high-performance liquid chromatography method was developed for the separation and identification of common organic carbonates. The separation of organic carbonates was achieved on an ion exclusion column with an exchangeable hydrogen ion. An isocratic, aqueous mobile phase was used for elution and detection was performed with a refractive index detector. The developed method was validated for specificity, linearity, limits of detection and quantification, precision and accuracy. All calibration curves showed excellent linear regression (R2 > 0.9990) within the testing range. The limits of detection were 3.8-30.8 ppm for the analyzed carbonates. Improvements in the peak resolution of the chromatograms were achieved by decreasing the column temperature. Addition of the organic modifier, acetonitrile, to the eluent was found to have insignificant effects on the peak resolution. The developed method was demonstrated for analyzing organic carbonate components in the electrolyte system of a commercial lithium ion battery.

10.
Chem Commun (Camb) ; 52(28): 5003-6, 2016 Apr 11.
Article in English | MEDLINE | ID: mdl-26981885

ABSTRACT

A quasi in situ X-ray absorption study demonstrated that the disproportionation of hydrogen peroxide (H2O2) promoted by ceria nanorods was associated with a reversible Ce(3+)/Ce(4+) reaction and structural transformations in ceria. The direction of this reversible reaction was postulated to depend on the H2O2 concentration and the fraction of Ce(3+) species in ceria nanorods.

11.
Phys Chem Chem Phys ; 17(48): 32251-6, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26580293

ABSTRACT

In this study we probe the electrocatalytic activity of Pt nanoparticles supported on ceria nanoparticles (NPs) and nanorods (NRs) in the ethanol oxidation reaction (EOR) in alkaline media. The goal of this study was to relate morphology, support structure and composition to the EOR catalytic activity by using in situ X-ray absorption fine structure (XAFS) studies. Cyclic voltammetry experiments showed that both ceria supported catalysts (NP vs. NR) had similar peak current densities at fast scan rates, however at slow scan rates, the ceria NR catalyst showed superior catalytic activity. In situ XAFS studies in KOH showed that both ceria supported catalysts had more electron density in their d-band (with the ceria NR having more electron density overall) than ceria - free Pt/Vulcan standard. However, in an ethanol solution the ceria NR catalyst had the least electron density. We propose that this change is due to the increased charge transfer efficiency between the ceria nanorod support and platinum. In the KOH solution, the increased electron density makes the platinum less electrophilic and hinders Pt-OH bond formation. In the EtOH solution, platinum's increased nucleophilicity facilitates the bond formation between Pt and the electron deficient carbon in ethanol which in turn withdraws the electron density from platinum and increases the white line intensity as observed in the XAS measurements.

13.
Langmuir ; 28(9): 4301-8, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22339263

ABSTRACT

The influence of high-k dielectric bioceramics with poly(amino acid) multilayer coatings on the adhesion behavior of Escherichia coli (E. coli) was studied by evaluating the density of bacteria coverage on the surfaces of these materials. A biofilm forming K-12 strain (PHL628), a wild-type strain (JM109), and an engineered strain (XL1-Blue) of E. coli were examined for their adherence to zirconium oxide (ZrO(2)) and tantalum oxide (Ta(2)O(5)) surfaces functionalized with single and multiple layers of poly(amino acid) polyelectrolytes made by the layer-by-layer (LBL) deposition. Two poly(amino acids), poly(l-arginine) (PARG) and poly(l-aspartic acid) (PASP), were chosen for the functionalization schemes. All three strains were found to grow and preferentially adhere to bare bioceramic film surfaces over bare glass slides. The bioceramic and glass surfaces functionalized with positively charged poly(amino acid) top layers were observed to enhance the adhesion of these bacteria by up to 4-fold in terms of bacteria surface coverage. Minimal bacteria coverage was detected on surfaces functionalized with negatively charged poly(amino acid) top layers. The effect of different poly(amino acid) coatings to promote or minimize bacterial adhesion was observed to be drastically enhanced with the bioceramic substrates than with glass. Such observed enhancements were postulated to be attributed to the formation of higher density of poly(amino acids) coatings enabled by the high dielectric strength (k) of these bioceramics. The multilayer poly(amino acid) functionalization scheme was successfully applied to utilize this finding for micropatterning E. coli on bioceramic thin films.


Subject(s)
Amino Acids/chemistry , Bacterial Adhesion/physiology , Escherichia coli/physiology , Membranes, Artificial , Polymers/chemistry
14.
Phys Chem Chem Phys ; 13(43): 19517-25, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21971264

ABSTRACT

The phase stability of nanocrystallites with metastable crystal structures under ambient conditions is usually attributed to their small grain size. It remains a challenging problem to maintain such phase integrity of these nanomaterials when their crystallite sizes become larger. Here we report an experimental-modelling approach to study the roles of nitrogen dopants in the formation and stabilization of cubic ZrO(2) nanocrystalline films. Mixed nitrogen and argon ion beam assisted deposition (IBAD) was applied to produce nitrogen-implanted cubic ZrO(2) nanocrystallites with grain sizes of 8-13 nm. Upon thermal annealing, the atomic structure of these ZrO(2) films was observed to evolve from a cubic phase, to a tetragonal phase and then a monoclinic phase. Our X-ray absorption near edge structure study on the annealed samples together with first-principle modelling revealed the significance of the interstitial nitrogen in the phase stabilization of nitrogen implanted cubic ZrO(2) crystallites via the soft mode hardening mechanism.


Subject(s)
Nitrogen/chemistry , Quantum Theory , Zirconium/chemistry , Crystallography, X-Ray , Microscopy, Electron, Transmission , Models, Molecular , Nanostructures/chemistry , Phase Transition
15.
Nano Lett ; 11(7): 2666-71, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21627100

ABSTRACT

Traditional nanostructured design of cerium oxide catalysts typically focuses on their shape, size, and elemental composition. We report a different approach to enhance the catalytic activity of cerium oxide nanostructures through engineering high density of oxygen vacancy defects in these catalysts without dopants. The defect engineering was accomplished by a low pressure thermal activation process that exploits the nanosize effect of decreased oxygen storage capacity in nanostructured cerium oxides.


Subject(s)
Cerium/chemistry , Nanostructures/chemistry , Oxygen/chemistry , Catalysis , Nanotechnology , Oxidation-Reduction , Particle Size , Surface Properties , Temperature
16.
Chem Commun (Camb) ; 47(9): 2703-5, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21234482

ABSTRACT

A two-step synthetic process is reported to fabricate porous ceria membranes by anodization of cerium metal foils with subsequent calcination. "Ribbon-like" structures were found to form the backbones of these porous frameworks. The hydrophobic nature of these membranes was revealed by water contact angle measurements.

17.
Langmuir ; 26(5): 3498-505, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-19754157

ABSTRACT

A highly ordered assembly of biological molecules provides a powerful means to study the organizational principles of objects at the nanoscale. Two-dimensional cowpea mosaic virus arrays were assembled in an ordered manner on mica using osmotic depletion effects and a drop-and-dry method. The packing of the virus array was controlled systematically from rhombic packing to hexagonal packing by modulating the concentrations of poly(ethylene glycol) surfactant in the virus solutions. The orientation and packing symmetry of the virus arrays were found to be tuned by the concentrations of surfactants in the sample solutions. A phenomenological model for the present system is proposed to explain the assembly array morphology under the influence of the surfactant. Steric and electrostatic complementarity of neighboring virus capsids is found to be the key factors in controlling the symmetry of packing.


Subject(s)
Comovirus/chemistry , Comovirus/metabolism , Static Electricity , Aluminum Silicates/chemistry , Capsid/chemistry , Capsid/metabolism , Comovirus/physiology , Electrolytes/chemistry , Microscopy, Atomic Force , Models, Molecular , Molecular Conformation , Polyethylene Glycols/chemistry , Surface Properties , Surface-Active Agents/chemistry , Virus Assembly , Volatilization
18.
Nano Lett ; 8(4): 988-96, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18338872

ABSTRACT

Patterned micro- and nanostructured surfaces have received increasing attention because of their ability to tune the hydrophobicity and hydrophilicity of their surfaces. However, the mechanical properties of these studied surfaces are not sufficiently robust for load-bearing applications. Here we report transparent nanocrystalline ZrO 2 films possessing combined properties of hardness and complete wetting behavior, which are expected to benefit tribology, wear reduction, and biomedical applications where ultrahydrophilic surfaces are required. This ultrahydrophilic behavior may be explained by the Wenzel model.


Subject(s)
Zirconium/chemistry , Nanostructures , Surface Properties , X-Ray Diffraction
19.
Scanning ; 30(2): 59-64, 2008.
Article in English | MEDLINE | ID: mdl-18288715

ABSTRACT

The application of titanium dioxide (TiO(2)) films as surgical implant coatings for antibiotic attachment depends crucially on their available surface area and thus their surface morphology and crystallinity. Here, we report our fabrication of high Wenzel ratio TiO(2) films targeted to increase the film surface area using the ion beam-assisted deposition (IBAD) technique at high-deposition temperatures (approximately 610 degrees C). The modulation of the films' surface morphology was accomplished by varying the chemical identity of the concurrent ion beams bombarded on the films during the e-beam evaporation process. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the surface morphology of the as-deposited films. X-ray diffractometry (XRD) revealed that these nanocrystalline films primarily consist of anatase phase TiO(2). Wenzel ratio, the ratio of the actual surface area to the projected area, of IBAD films prepared with argon, oxygen, and nitrogen ion beams was measured to be 1.52, 1.31 and 1.49, respectively. The effect of the differences in chemical reactivity and ion size of these three type ion beams are discussed to explain the present results.


Subject(s)
Coated Materials, Biocompatible , Metal Nanoparticles/ultrastructure , Titanium , Microscopy, Atomic Force , Microscopy, Electron, Scanning , X-Ray Diffraction
20.
J Am Chem Soc ; 128(33): 10801-7, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16910675

ABSTRACT

Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30 nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at sub-critical volume fractions. The growth kinetics followed a t(1/2) law controlled by the slow diffusion of viruses. The ability of poly(ethylene glycol) (PEG) to induce the lateral expansion of virus clusters away from the 1D templates suggests a significant role for weak interactions.


Subject(s)
Comovirus/chemistry , Comovirus/physiology , Virus Assembly/physiology , Comovirus/genetics , Histidine/chemistry , Models, Molecular , Protein Conformation , Viral Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...