Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J ; 43(45): 4739-4750, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36200607

ABSTRACT

AIMS: In response to pro-fibrotic signals, scleraxis regulates cardiac fibroblast activation in vitro via transcriptional control of key fibrosis genes such as collagen and fibronectin; however, its role in vivo is unknown. The present study assessed the impact of scleraxis loss on fibroblast activation, cardiac fibrosis, and dysfunction in pressure overload-induced heart failure. METHODS AND RESULTS: Scleraxis expression was upregulated in the hearts of non-ischemic dilated cardiomyopathy patients, and in mice subjected to pressure overload by transverse aortic constriction (TAC). Tamoxifen-inducible fibroblast-specific scleraxis knockout (Scx-fKO) completely attenuated cardiac fibrosis, and significantly improved cardiac systolic function and ventricular remodelling, following TAC compared to Scx+/+ TAC mice, concomitant with attenuation of fibroblast activation. Scleraxis deletion, after the establishment of cardiac fibrosis, attenuated the further functional decline observed in Scx+/+ mice, with a reduction in cardiac myofibroblasts. Notably, scleraxis knockout reduced pressure overload-induced mortality from 33% to zero, without affecting the degree of cardiac hypertrophy. Scleraxis directly regulated transcription of the myofibroblast marker periostin, and cardiac fibroblasts lacking scleraxis failed to upregulate periostin synthesis and secretion in response to pro-fibrotic transforming growth factor ß. CONCLUSION: Scleraxis governs fibroblast activation in pressure overload-induced heart failure, and scleraxis knockout attenuated fibrosis and improved cardiac function and survival. These findings identify scleraxis as a viable target for the development of novel anti-fibrotic treatments.


Subject(s)
Heart Failure , Ventricular Remodeling , Mice , Animals , Fibrosis , Myofibroblasts/metabolism , Cardiomegaly/metabolism , Fibroblasts/metabolism , Heart Failure/pathology , Myocardium/pathology , Mice, Inbred C57BL
2.
Curr Oncol ; 29(5): 2941-2953, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35621631

ABSTRACT

BACKGROUND: Two anti-cancer agents, doxorubicin (DOX) and trastuzumab (TRZ), are commonly used in the management of breast cancer in women. Despite their efficacy in reducing the morbidity and mortality of individuals with breast cancer, the use of these agents is limited by adverse cardiotoxic side effects. Both the nutraceutical agent flaxseed (FLX) and the pharmaceutical drug perindopril (PER) have been studied individually in the prevention of chemotherapy-mediated cardiac dysfunction. The objective of this study was to determine whether the prophylactic administration of FLX is comparable and/or synergistic with PER in preventing DOX + TRZ-induced cardiotoxicity. METHODS: Over a six-week period, 81 wild-type C57Bl/6 female mice (8-12 weeks old) were randomized to receive regular chow (RC) or 10% FLX-supplemented diets with or without PER (3 mg/kg/week; oral gavage). Starting at week 4, mice were randomized to receive a weekly injection of saline or DOX (8 mg/kg) + TRZ (3 mg/kg). Serial echocardiography was conducted weekly and histological and biochemical analyses were performed at the end of the study. RESULTS: In mice treated with RC + DOX + TRZ, left ventricular ejection (LVEF) decreased from 75 ± 2% at baseline to 37 ± 3% at week 6. However, prophylactic treatment with either FLX, PER, or FLX + PER partially preserved left ventricular systolic function with LVEF values of 61 ± 2%, 62 ± 2%, and 64 ± 2%, respectively. The administration of FLX, PER, or FLX + PER was also partially cardioprotective in preserving cardiomyocyte integrity and attenuating the expression of the inflammatory biomarker NF-κB due to DOX + TRZ administration. CONCLUSION: FLX was equivalent to PER at preventing DOX + TRZ-induced cardiotoxicity in a chronic in vivo murine model.


Subject(s)
Breast Neoplasms , Cardiotoxicity , Flax , Perindopril , Animals , Breast Neoplasms/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Doxorubicin/toxicity , Female , Humans , Mice , Mice, Inbred C57BL , Perindopril/therapeutic use , Trastuzumab/toxicity
3.
Cell Tissue Res ; 385(3): 753-768, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34057573

ABSTRACT

Fibroblast growth factor 2 (FGF2), produced as high (Hi-) and low (Lo-) molecular weight isoforms, is implicated in cardiac response to injury. The role of endogenous FGF2 isoforms during chronic stress is not well defined. We investigated the effects of endogenous Hi-FGF2 in a mouse model of simulated pressure-overload stress achieved by transverse aortic constriction (TAC) surgery. Hi-FGF2 knockout mice, expressing only Lo-FGF2, FGF2(Lo), and wild-type mice, FGF2(WT), expressing both Hi-FGF2 and Lo-FGF2, were used. By echocardiography, a decline in systolic function was observed in FGF2(WT) but not FGF2(Lo) mice compared to corresponding sham-operated animals at 4-8 weeks post-TAC surgery. TAC surgery increased markers of myocardial stress/damage including B-type natriuretic peptide (BNP) and the pro-cell death protein BCL2/adenovirus E1B 19 kDa protein-interacting protein-3 (Bnip3) in FGF2(WT) but not FGF2(Lo) mice. In FGF2(Lo) mice, cardiac levels of activated FGF receptor 1 (FGFR1), and downstream signals, including phosphorylated mTOR and p70S6 kinase, were elevated post-TAC. Finally, NR1D1 (nuclear receptor subfamily 1 group D member 1), implicated in cardioprotection from pressure-overload stress, was downregulated or upregulated in the presence or absence, respectively, of Hi-FGF2 expression, post-TAC surgery. In wild-type cardiomyocyte cultures, endothelin-1 (added to simulate pressure-overload signals) caused NR1D1 downregulation and BNP upregulation, similar to the effect of TAC surgery on the FGF2(WT) mice. The NR1D1 agonist SR9009 prevented BNP upregulation, simulating post-TAC findings in FGF2(Lo) mice. We propose that elimination of Hi-FGF2 is cardioprotective during pressure-overload by increasing FGFR1-associated signaling and NR1D1 expression.


Subject(s)
Blood Pressure/genetics , Fibroblast Growth Factor 2/therapeutic use , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Animals , Male , Mice , Mice, Knockout , Rats , Signal Transduction
4.
J Nutr ; 150(9): 2353-2363, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32510147

ABSTRACT

BACKGROUND: Although the combination of doxorubicin (DOX) and trastuzumab (TRZ) reduces the progression and recurrence of breast cancer, these anticancer drugs are associated with significant cardiotoxic side effects. OBJECTIVE: We investigated whether prophylactic administration of flaxseed (FLX) and its bioactive components, α-linolenic acid (ALA) and secoisolariciresinol diglucoside (SDG), would be cardioprotective against DOX + TRZ-mediated cardiotoxicity in a chronic in vivo female murine model. METHODS: Wild-type C57BL/6 female mice (10-12 wk old) received daily prophylactic treatment with one of the following diets: 1) regular control (RC) semi-purified diet; 2) 10% FLX diet; 3) 4.4% ALA diet; or 4) 0.44% SDG diet for a total of 6 wks. Within each arm, mice received 3 weekly injections of 0.9% saline or a combination of DOX [8 mg/(kg.wk)] and TRZ [3 mg/(kg.wk)] starting at the end of week 3. The main outcome was to evaluate the effects of FLX, ALA, and SDG on cardiovascular remodeling and markers of apoptosis, inflammation, and mitochondrial dysfunction. Significance between measurements was determined using a 4 (diet) × 2 (chemotherapy) × 2 (time) mixed factorial design with repeated measures. RESULTS: In the RC + DOX + TRZ-treated mice at week 6 of the study, the left ventricular ejection fraction (LVEF) decreased by 50% compared with the baseline LVEF (P < 0.05). However, the prophylactic administration of the FLX, ALA, or SDG diet was partially cardioprotective, with mice in these treatment groups showing an ∼68% increase in LVEF compared with the RC + DOX + TRZ-treated group at week 6 (P < 0.05). Although markers of inflammation (nuclear transcription factor κB), apoptosis [poly (ADP-ribose) polymerase-1 and the ratio of BCL2-associated X protein to B-cell lymphoma-extra large], and mitochondrial dysfunction (BCL2-interacting protein 3) were significantly elevated by approximately 2-fold following treatment with RC + DOX + TRZ compared with treatment with RC + saline at week 6, prophylactic administration of FLX, ALA, or SDG partially downregulated these signaling pathways. CONCLUSION: In a chronic in vivo female C57BL/6 mouse model of DOX + TRZ-mediated cardiotoxicity, FLX, ALA, and SDG were partially cardioprotective.


Subject(s)
Dietary Supplements , Doxorubicin/adverse effects , Flax , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Trastuzumab/adverse effects , Animals , Antineoplastic Agents/adverse effects , Cardiotoxicity , Female , Mice , Mice, Inbred C57BL , Ventricular Function, Left
5.
BMC Res Notes ; 7: 787, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25374312

ABSTRACT

BACKGROUND: Left ventricular non compaction is a relatively rare congenital disorder characterized by prominent trabeculations and intertrabecular recesses with the potential for thromboembolism, arrhythmias, and sudden cardiac death as adverse effects. Echocardiography has traditionally been employed as the primary mode of imaging; however, with the advent of cardiac magnetic resonance as a more precise imaging technique, the disorder known as left ventricle non compaction is becoming more broadly defined with increasing recognition of right ventricle (RV) involvement. CASE PRESENTATION: This report describes a 52-year-old Caucasian female with new onset atrial fibrillation with an unusual finding of left ventricular non compaction and right ventricular dysfunction on transthoracic echocardiogram with preserved left ventricular ejection fraction. Cardiac magnetic resonance imaging demonstrated a disproportionately affected right ventricle, with apical free wall dyskinesis. CONCLUSIONS: This case illustrates the unique occurrence of left ventricular non compaction with preserved ejection fraction alongside RV free wall dyskinesis and RV systolic dysfunction. The significance of this is yet unknown given the paucity of existing literature. This report serves to highlight the vast heterogeneity within left ventricular non compaction as we are better able to delineate this disorder using increasingly sophisticated imaging techniques.


Subject(s)
Heart Defects, Congenital/pathology , Heart Ventricles/pathology , Echocardiography , Female , Heart Defects, Congenital/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Middle Aged , Multimodal Imaging
6.
PLoS One ; 6(12): e29099, 2011.
Article in English | MEDLINE | ID: mdl-22206000

ABSTRACT

Senescence, the state of permanent cell cycle arrest, has been associated with endothelial cell dysfunction and atherosclerosis. The cyclin dependent kinase inhibitors p21(CIP1/WAF1) and p16(INK4a) govern the G(1)/S cell cycle checkpoint and are essential for determining whether a cell enters into an arrested state. The homeodomain transcription factor MEOX2 is an important regulator of vascular cell proliferation and is a direct transcriptional activator of both p21(CIP1/WAF1) and p16(INK4a). MEOX1 and MEOX2 have been shown to be partially functionally redundant during development, suggesting that they regulate similar target genes in vivo. We compared the ability of MEOX1 and MEOX2 to activate p21(CIP1/WAF1) and p16(INK4a) expression and induce endothelial cell cycle arrest. Our results demonstrate for the first time that MEOX1 regulates the MEOX2 target genes p21(CIP1/WAF1) and p16(INK4a). In addition, increased expression of either of the MEOX homeodomain transcription factors leads to cell cycle arrest and endothelial cell senescence. Furthermore, we show that the mechanism of transcriptional activation of these cyclin dependent kinase inhibitor genes by MEOX1 and MEOX2 is distinct. MEOX1 and MEOX2 activate p16(INK4a) in a DNA binding dependent manner, whereas they induce p21(CIP1/WAF1) in a DNA binding independent manner.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endothelial Cells/metabolism , Homeodomain Proteins/metabolism , Animals , Base Sequence , Binding Sites , Cell Proliferation , Cellular Senescence , DNA/metabolism , Endothelial Cells/cytology , HEK293 Cells , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Intracellular Space/metabolism , Mice , Promoter Regions, Genetic/genetics , Protein Transport , Sp1 Transcription Factor/metabolism , Transcription Factors , Transcription, Genetic , Transcriptional Activation
7.
Biochim Biophys Acta ; 1813(1): 201-12, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21040746

ABSTRACT

The homeobox transcription factor PROX1 is essential for the development and maintenance of lymphatic vasculature. How PROX1 regulates lymphatic endothelial cell fate remains undefined. PROX1 has been shown to upregulate the expression of Cyclin E, which mediates the G(1) to S transition of the cell cycle. Here we demonstrate that PROX1 activates the mouse Cyclin E1 (Ccne1) promoter via two proximal E2F-binding sites. We have determined that the N-terminal region of PROX1 is sufficient to activate a 1-kb Ccne1 promoter, whereas the homeodomain is dispensable for activation. We have identified that the Prospero domain 1 (PD1) is required for the nuclear localization of PROX1. Our comparison of two DNA-binding-deficient constructs of PROX1 showed a cell-type-specific difference between these two proteins in both their localization and function. We demonstrated that siRNA-mediated knockdown of PROX1 in lymphatic endothelial cells decreases progression from G(1) to S phase of the cell cycle. We conclude that PROX1 activates the Ccne1 promoter independent of DNA binding, and our results illustrate a novel role for PROX1 in the regulation of lymphatic endothelial cell proliferation.


Subject(s)
Cell Cycle , Cyclin E/genetics , Endothelial Cells/metabolism , Homeodomain Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Apoptosis , Binding Sites , Blotting, Western , Cell Proliferation , Cells, Cultured , Cyclin E/metabolism , E2F1 Transcription Factor/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Humans , Immunoenzyme Techniques , Kidney/cytology , Kidney/metabolism , Luciferases/metabolism , Mice , Promoter Regions, Genetic/genetics , RNA, Small Interfering/genetics , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Umbilical Veins/cytology , Umbilical Veins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...