Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 135: 105247, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35998738

ABSTRACT

Under ICH M7, impurities are assessed using the bacterial reverse mutation assay (i.e., Ames test) when predicted positive using in silico methodologies followed by expert review. N-Nitrosamines (NAs) have been of recent concern as impurities in pharmaceuticals, mainly because of their potential to be highly potent mutagenic carcinogens in rodent bioassays. The purpose of this analysis was to determine the sensitivity of the Ames assay to predict the carcinogenic outcome with curated proprietary Vitic (n = 131) and Leadscope (n = 70) databases. NAs were selected if they had corresponding rodent carcinogenicity assays. Overall, the sensitivity/specificity of the Ames assay was 93-97% and 55-86%, respectively. The sensitivity of the Ames assay was not significantly impacted by plate incorporation (84-89%) versus preincubation (82-89%). Sensitivity was not significantly different between use of rat and hamster liver induced S9 (80-93% versus 77-96%). The sensitivity of the Ames is high when using DMSO as a solvent (87-88%). Based on the analysis of these databases, the Ames assay conducted under OECD 471 guidelines is highly sensitive for detecting the carcinogenic hazards of NAs.


Subject(s)
Dimethyl Sulfoxide , Nitrosamines , Animals , Bacteria , Biological Assay , Carcinogens/toxicity , Cricetinae , Mutation , Nitrosamines/metabolism , Nitrosamines/toxicity , Pharmaceutical Preparations , Rats , Rodentia/metabolism , Solvents
2.
Environ Mol Mutagen ; 59(4): 312-321, 2018 05.
Article in English | MEDLINE | ID: mdl-29481708

ABSTRACT

2-Hydroxypyridine-N-oxide (HOPO) is a useful coupling reagent for synthesis of active pharmaceutical ingredients. It has been reported to be weakly mutagenic in the Ames assay (Ding W et al. []: J Chromatogr A 1386:47-52). According to the ICH M7 guidance (2014) regarding control of mutagenic impurities to limit potential carcinogenic risk, mutagens require control in drug substances such that exposure not exceeds the threshold of toxicological concern. Given the weak response observed in the Ames assay and the lack of any obvious structural features that could confer DNA reactivity we were interested to determine if the results were reproducible and investigate the role of potentially confounding experimental parameters. Specifically, Ames tests were conducted to assess the influence of compound purity, solvent choice, dose spacing, toxicity, type of S9 (aroclor vs phenobarbital/ß-napthoflavone), and lot variability on the frequency of HOPO induced revertant colonies. Initial extensive testing using one lot of HOPO produced no evidence of mutagenic potential in the Ames assays. Subsequent studies with four additional lots produced conflicting results, with an ∼2.0-fold increase in revertant colonies observed. Given the rigor of the current investigation, lack of reproducibility between lots, and the weak increase in revertants, it is concluded that HOPO is equivocal in the bacterial reverse mutation assay. It is highly unlikely that HOPO poses a mutagenic risk in vivo; therefore, when it is used as a reagent in pharmaceutical synthesis, it should not be regarded as a mutagenic impurity, but rather a normal process related impurity. Environ. Mol. Mutagen. 59:312-321, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Cyclic N-Oxides/toxicity , Mutagenicity Tests/standards , Pyridines/toxicity , Bacteria/drug effects , Cyclic N-Oxides/chemistry , Pyridines/chemistry , Reproducibility of Results
3.
Regul Toxicol Pharmacol ; 91: 68-76, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29061373

ABSTRACT

The ICH M7 Guideline requires low level control of mutagenic impurities in pharmaceutical products to minimize cancer risk in patients (ICHM7, 2014). Bacterial mutagenicity (Ames) data is generally used to determine mutagenic and possible carcinogenic potential of compounds. Recently, a publication on experiences of using two in silico systems to identify potentially mutagenic impurities highlighted the importance of performing a critical review of published Ames data utilized as part of a mutagenicity assessment of impurities (Greene et al., 2015). Four compounds (2-amino-5-hydroxybenzoic acid, 2-amino-3-chlorobenzoic acid, methyl 2-amino-4-chlorobenzoate and 4-morpholinopyridine) reported mutagenic were identified in a two system in silico assessment and expert review of the structuresas non-mutagenic. Likely reasons for mutagenicity could not be identified and the purity of the compounds tested was proposed. In the current investigation, the purest available sample of the four compounds was tested in an OECD-compliant Ames test. The compounds were all found to be non-mutagenic. Possible reasons for the discrepancy between previously reported and current results are discussed. Additionally, important points to consider when conducting an expert review of available Ames data are provided particularly in cases where reported Ames results are discrepant with a two system in silico assessment.


Subject(s)
Mutagens/chemistry , Pharmaceutical Preparations/chemistry , Animals , Computer Simulation , Drug Contamination , Escherichia coli/drug effects , Mutagenesis/drug effects , Mutagenicity Tests/methods , Rats , Salmonella typhimurium/drug effects
4.
Article in English | MEDLINE | ID: mdl-25726170

ABSTRACT

The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds.


Subject(s)
Aneugens/pharmacology , Histones/metabolism , Lymphocytes/drug effects , Micronucleus Tests , Mutagens/pharmacology , Apoptosis/drug effects , Biomarkers/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Etoposide/pharmacology , Flow Cytometry , Gene Expression/drug effects , Histones/genetics , Humans , Lymphocytes/cytology , Lymphocytes/metabolism , Noscapine/pharmacology , Phosphorylation , Polyploidy , Tunicamycin/pharmacology
5.
Mutat Res ; 746(1): 29-34, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22445949

ABSTRACT

The Organization for Economic Co-operation and Development (OECD) has recently adopted Test Guideline 487 (TG487) for conducting the in vitro micronucleus (MNvit) assay. The purpose of this study is to evaluate and validate treatment conditions for the use of p53 competent TK6 human lymphoblastoid cells in a TG487 compliant MNvit assay. The ten reference compounds suggested in TG487 (mitomycin C, cytosine arabinoside, cyclophosphamide, benzo-a-pyrene, vinblastine sulphate, colchicine, sodium chloride, nalidixic acid and di(2-ethylhexyl)phthalate and pyrene) and noscapine hydrochloride were chosen for this study. In order to optimize the micronucleus response after treatment with some positive substances, we extended the recovery time after pulse treatment from 2 cell cycles recommended in TG487 to 3 cell cycles for untreated cells (40h). Each compound was tested in at least one of four exposure conditions: a 4h exposure followed by a 40h recovery, a 4h exposure followed by a 24h recovery, a 4h exposure in the presence of an exogenous metabolic activation system followed by a 40h recovery period, and a 27h continuous direct treatment. Results show that the direct acting clastogens, clastogens requiring metabolic activation and aneugens caused a robust increase in micronuclei in at least one test condition whereas the negative compounds did not induce micronuclei. The negative control cultures exhibited reproducibly low and consistent micronucleus frequencies ranging from 0.4 to 1.8% (0.8±0.3% average and standard deviation). Furthermore, extending the recovery period from 24h to 40h produced a 2-fold higher micronucleus frequency after a 4h pulse treatment with mitomycin C. In summary, the protocol described in this study in TK6 cells produced the expected result with model compounds and should be suitable for performing the MNvit assay in accordance with guideline TG487.


Subject(s)
Antineoplastic Agents/toxicity , Micronucleus Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Biotransformation , Cell Line , Guidelines as Topic , Humans
6.
Mutagenesis ; 22(5): 335-42, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17656636

ABSTRACT

Here, we describe the development and evaluation of a novel bioluminescent high-throughput Salmonella reverse mutation assay applicable to the screening of large numbers of small molecules. The bioluminescent Salmonella assay utilizes genetically engineered standard Salmonella tester strains TA98 and TA100 expressing the lux(CDABE) operon from Xenorhabdus luminescence. In principle, the assay employs bioluminescence as a sensor of changes in bacterial metabolism associated with starvation or energy depletion effectively identifying colonies of histidine-independent revertant cells in a high-throughput fashion. The assay provides highly concordant data with the outcome in the standard Salmonella plate incorporation reverse mutation assay. Since the results of the standard Salmonella plate assay are required by various regulatory agencies for approval of new drugs, the bioluminescent Salmonella assay can be effectively used for prioritization of compounds in pharmaceutical drug discovery as well as the evaluation of environmental and industrial chemicals. Because of its high throughput attributes, the assay permits effective, fast and economical screening of a large series of structural analogs enabling the investigation of structure-activity relationships.


Subject(s)
Luminescent Measurements , Mutagenicity Tests/methods , Salmonella/drug effects , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Mutation , Operon , Photorhabdus/genetics , Salmonella/genetics
7.
Drug Metab Dispos ; 35(6): 848-58, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17344339

ABSTRACT

2-(3-Chlorobenzyloxy)-6-(piperazin-1-yl)pyrazine (3) is a potent and selective 5-HT(2C) agonist that exhibits dose-dependent inhibition of food intake and reduction in body weight in rats, making it an attractive candidate for treatment of obesity. However, examination of the genotoxicity potential of 3 in the Salmonella Ames assay using tester strains TA98, TA100, TA1535, and TA1537 revealed a metabolism (rat S9/NADPH)- and dose-dependent increase of reverse mutations in strains TA100 and TA1537. The increase in reverse mutations was attenuated upon coincubation with methoxylamine and glutathione. The irreversible and concentration-dependent incorporation of radioactivity in calf thymus DNA after incubations with [14C]3 in the presence of rat S9/NADPH suggested that 3 was bioactivated to a reactive intermediate that covalently bound DNA. In vitro metabolism studies on 3 with rat S9/NADPH in the presence of methoxylamine and cyanide led to the detection of amine and cyano conjugates of 3. The mass spectrum of the amine conjugate was consistent with condensation of amine with an aldehyde metabolite derived from hydroxylation of the secondary piperazine nitrogen-alpha-carbon bond. The mass spectrum of the cyano conjugate suggested a bioactivation pathway involving N-hydroxylation of the secondary piperazine nitrogen followed by two-electron oxidation to generate an electrophilic nitrone, which reacted with cyanide. The 3-chlorobenzyl motif in 3 was also bioactivated via initial aromatic ring hydroxylation followed by elimination to a quinone-methide species that reacted with glutathione or with the secondary piperazine ring nitrogen in 3 and its monohydroxylated metabolite(s). The metabolism studies described herein provide a mechanistic basis for the mutagenicity of 3.


Subject(s)
Piperazines/toxicity , Pyrazines/toxicity , Salmonella typhimurium/drug effects , Serotonin 5-HT2 Receptor Agonists , Biotransformation , Mutagenicity Tests , Obesity , Piperazines/chemical synthesis , Piperazines/metabolism , Pyrazines/chemical synthesis , Pyrazines/metabolism , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism
8.
Regul Toxicol Pharmacol ; 48(1): 75-86, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17379368

ABSTRACT

Low level impurities often reside in active pharmaceutical ingredients (API). Some of these impurities are potentially genotoxic since reactive intermediates are used in the synthetic route for the production of API. Routine mutagenicity testing is conducted in support of clinical trials with the intent to identify genotoxic hazards associated with API. Depending on the amount of impurity present in the API tested, the potency of the impurities and the relative sensitivity of the Ames assay, it is possible that mutagenicity associated with the presence of genotoxic impurities could also be detected while testing API. Therefore, we evaluated published data and generated new information to understand the sensitivity of the Ames assay. Based on a literature survey of approximately 450 mutagens, it was estimated that 85% of mutagens are detected at concentrations of 250 microg/plate or less. Based on this estimate, most mutagens should be detected in an Ames assay testing API concentrations up to 5000 microg/plate if present at a 5% or greater concentration. Data from experiments where several direct and indirect-acting mutagens were spiked into representative API further support the literature-based evaluation. Some limitations of this approach, including toxicity of API and competing metabolism are discussed.


Subject(s)
Drug Contamination , Mutagenicity Tests/standards , Mutagens/analysis , Bacteriological Techniques , Data Collection , No-Observed-Adverse-Effect Level , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...