Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Magn Reson Imaging ; 111: 47-56, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38513789

ABSTRACT

PURPOSE: Diffusion-weighted imaging (DWI) holds promise for image-guided radiotherapy (MRgRT) in prostate cancer. However, challenges persist due to image distortion, artifacts, and apparent diffusion coefficient (ADC) reproducibility issues. This study aimed to assess DWI image quality and ADC reproducibility on both a 1.5 T MR-simulator and a 1.5 T MR-Linac, employing measurements from both an ACR MRI phantom and prostate cancer patients undergoing MRgRT. METHODS: DW-MRI scans were conducted on 19 patients (mean age = 69 ± 8 years, with 23 MR-visible intra-prostatic lesions) and an ACR MRI phantom using a 1.5 T MR-simulator (b-values = 0, 800, 1400s/mm2) and a 1.5 T MR-Linac (b-values = 50, 500, 800 s/mm2). ADC homogeneity in the phantom was evaluated via 1D profile flatness (FL) in three directions. Image quality was assessed through qualitative 5-point Likert scale ratings and quantitative ADC and signal-to-noise ratio (SNR) measurements. Intra-observer reproducibility of image quality scores was evaluated using ICC(1, 2). Geometric distortion was measured by comparing landmark sizes on the ACR phantom against the ground truth. Mean ADC and reproducibility were assessed using Bland-Altman plots. RESULTS: Both MR-simulator and MR-Linac demonstrated high ADC homogeneity (FL > 87.5% - MR-simulator: 97.23 ± 0.62%, MR-Linac: 94.75 ± 0.62%, p < 0.05) in the phantom. Image quality scores revealed acceptable ratings (≥3) for capsule demarcation, image artifacts, and geometric distortion in patients. However, intra-prostatic lesions were barely discernible in b800 images for both MR-simulator (average score = 2.37 ± 1.33) and MR-Linac (average score = 2.16 ± 1.28). While MR-Linac DWI scans exhibited significantly more severe geometric distortion than MR-simulator scans (p < 0.01), most phantom measurements fell within the image in-plane resolution of 3 mm. Significant differences were noted in MR-simulator ADC (CTV: 1.20 ± 0.14 × 10-3 mm2/s (MR-simulator) vs 1.06 ± 0.10 × 10-3 mm2/s (MR-Linac); GTV: 1.05 ± 0.21 × 10-3 mm2/s vs 0.91 ± 0.16 × 10 mm2/s, all p < 0.05), with a small non-zero bias observed in the Bland-Altman analysis (CTV: 12.3%; GTV: 14.5%). CONCLUSION: The significantly larger MR-simulator ADC and the small non-zero bias hint at potential systematic differences in ADC values acquired from an MR-simulator and an MR-Linac, both at 1.5 T. Although acceptable ADC homogeneity was noted, caution is warranted in interpreting MR-Linac DWI images due to occasional severe artifacts. Further studies are essential to validate DWI and ADC as reliable imaging markers in prostate cancer MRgRT.


Subject(s)
Diffusion Magnetic Resonance Imaging , Phantoms, Imaging , Prostate , Prostatic Neoplasms , Radiotherapy, Image-Guided , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Diffusion Magnetic Resonance Imaging/methods , Reproducibility of Results , Aged , Radiotherapy, Image-Guided/methods , Prostate/diagnostic imaging , Middle Aged , Signal-To-Noise Ratio , Artifacts , Image Processing, Computer-Assisted/methods
2.
World J Urol ; 42(1): 97, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393414

ABSTRACT

BACKGROUND AND PURPOSE: This prospective study aimed to investigate adaptive magnetic resonance (MR)-guided stereotactic body radiation therapy (MRgSBRT) with rectal spacer for localized prostate cancer (PC) and report 1-year clinical outcomes. MATERIALS AND METHODS: Thirty-four consecutive patients with low- to high-risk localized PC that underwent 5-fraction adaptive MRgSBRT with rectal spacer were enrolled. The dosimetric comparison was performed on a risk- and age-matched cohort treated with MRgSBRT but without a spacer at a similar timepoint. Clinician-reported outcomes were based on Common Terminology Criteria for Adverse Events. Patient-reported outcomes were based on the Expanded Prostate Cancer Index Composite (EPIC) questionnaire at baseline, acute (1-3 months), subacute (4-12 months), and late (> 12 months) phases. RESULTS: The median follow-up was 390 days (range 28-823) and the median age was 70 years (range 58-82). One patient experienced rectal bleeding soon after spacer insertion that subsided before MRgSBRT. The median distance between the midline of the prostate midgland and the rectum after spacer insertion measured 7.8 mm (range 2.6-15.3), and the median length of the spacer was 45.9 mm (range 16.8-62.9) based on T2-weighted MR imaging. The use of spacer resulted in significant improvements in target coverage (V100% > 95% = 98.6% [range 93.4-99.8] for spacer vs. 97.8% [range 69.6-99.7] for non-spacer) and rectal sparing (V95% < 3 cc = 0.7 cc [range 0-4.6] for spacer vs. 4.9 cc [range 0-12.5] for non-spacer). Nine patients (26.5%) experienced grade 1 gastrointestinal toxicities, and no grade ≥ 2 toxicities were observed. During the 1-year follow-up period, EPIC scores for the bowel domain remained stable and were the highest among all other domains. CONCLUSIONS: MRgSBRT with rectal spacer for localized PC showed exceptional tolerability with minimal gastrointestinal toxicities and satisfactory patient-reported outcomes. Improvements in dosimetry, rectal sparing, and target coverage were achieved with a rectal spacer. Randomized trials are warranted for further validation.


Subject(s)
Prostatic Neoplasms , Rectum , Male , Humans , Middle Aged , Aged , Aged, 80 and over , Prospective Studies , Radiotherapy Dosage , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
3.
Med Phys ; 51(2): 1244-1262, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37665783

ABSTRACT

BACKGROUND: The use of synthetic computed tomography (CT) for radiotherapy treatment planning has received considerable attention because of the absence of ionizing radiation and close spatial correspondence to source magnetic resonance (MR) images, which have excellent tissue contrast. However, in an MR-only environment, little effort has been made to examine the quality of synthetic CT images without using the original CT images. PURPOSE: To estimate synthetic CT quality without referring to original CT images, this study established the relationship between synthetic CT uncertainty and Bayesian uncertainty, and proposed a new Bayesian deep network for generating synthetic CT images and estimating synthetic CT uncertainty for MR-only radiotherapy treatment planning. METHODS AND MATERIALS: A novel deep Bayesian network was formulated using probabilistic network weights. Two mathematical expressions were proposed to quantify the Bayesian uncertainty of the network and synthetic CT uncertainty, which was closely related to the mean absolute error (MAE) in Hounsfield Unit (HU) of synthetic CT. These uncertainties were examined to demonstrate the accuracy of representing the synthetic CT uncertainty using a Bayesian counterpart. We developed a hybrid Bayesian architecture and a new data normalization scheme, enabling the Bayesian network to generate both accurate synthetic CT and reliable uncertainty information when probabilistic weights were applied. The proposed method was evaluated in 59 patients (13/12/32/2 for training/validation/testing/uncertainty visualization) diagnosed with prostate cancer, who underwent same-day pelvic CT- and MR-acquisitions. To assess the relationship between Bayesian and synthetic CT uncertainties, linear and non-linear correlation coefficients were calculated on per-voxel, per-tissue, and per-patient bases. For accessing the accuracy of the CT number and dosimetric accuracy, the proposed method was compared with a commercially available atlas-based method (MRCAT) and a U-Net conditional-generative adversarial network (UcGAN). RESULTS: The proposed model exhibited 44.33 MAE, outperforming UcGAN 52.51 and MRCAT 54.87. The gamma rate (2%/2 mm dose difference/distance to agreement) of the proposed model was 98.68%, comparable to that of UcGAN (98.60%) and MRCAT (98.56%). The per-patient and per-tissue linear correlation coefficients between the Bayesian and synthetic CT uncertainties ranged from 0.53 to 0.83, implying a moderate to strong linear correlation. Per-voxel correlation coefficients varied from -0.13 to 0.67 depending on the regions-of-interest evaluated, indicating tissue-dependent correlation. The R2 value for estimating MAE solely using Bayesian uncertainty was 0.98, suggesting that the uncertainty of the proposed model was an ideal candidate for predicting synthetic CT error, without referring to the original CT. CONCLUSION: This study established a relationship between the Bayesian model uncertainty and synthetic CT uncertainty. A novel Bayesian deep network was proposed to generate a synthetic CT and estimate its uncertainty. Various metrics were used to thoroughly examine the relationship between the uncertainties of the proposed Bayesian model and the generated synthetic CT. Compared with existing approaches, the proposed model showed comparable CT number and dosimetric accuracies. The experiments showed that the proposed Bayesian model was capable of producing accurate synthetic CT, and was an effective indicator of the uncertainty and error associated with synthetic CT in MR-only workflows.


Subject(s)
Radiotherapy, Intensity-Modulated , Male , Humans , Bayes Theorem , Uncertainty , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods
4.
Med Phys ; 50(6): 3623-3636, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36975016

ABSTRACT

MR-guided radiotherapy (MRgRT) is one of the most significant advances in radiotherapy in recent years. The hybrid systems were designed to visualize patient anatomical and physiological changes during the course of radiotherapy, enabling more precise treatment. However, before MR-linacs reach their full potential in delivering safe and accurate treatments to patients, the radiotherapy team must understand how a magnetic field alters the dosimetric properties of the radiation beam and its potential impact on treatment quality and clinical outcomes. This review aims to provide an in-depth description of the magnetic field induced dose effects for the two widely available systems, the 0.35 T and the 1.5 T MR-linacs. In MR-linac treatments, the primary photon beam passes through MR components that never exist in conventional linacs, which alter both in-field and out-of-field doses. More importantly, the interplay between the always-on magnetic field and the secondary electrons is not negligible. This interplay affects dose deposition in the patient, resulting in reduced in-field skin dose due to purged-out contaminant electrons, shortened build-up distance and a shifted crossline profile owing to asymmetric dose kernel. Especially two effects, namely, electron return effect (ERE) and electron stream effect (ESE), are not seen in conventional radiotherapy. This review also summarizes the clinical observations on the site-specific treatments influenced mostly by the magnetic field. In MR-linac treatment, the head and neck region is one of the most challenging sites as ERE occurs at low and high density tissue interfaces and around air cavities, generating hot and cold spots. In breast cancer treatment, consideration should be given to the increased in-field skin dose induced by ERE and the increased out-of-field dose caused by ESE for regions such as the ears, chin, and neck. In lung cancer treatments, tissue inhomogeneity combined with ERE will exacerbate target dose heterogeneity and increase or decrease interface dose. Lastly, treatment in the abdomen and pelvic region will be affected by the presence of gas pockets near the target. The review provides practical recommendations to mitigate these effects.


Subject(s)
Magnetic Fields , Radiometry , Humans , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Pelvis , Lung , Magnetic Resonance Imaging/methods , Particle Accelerators , Radiotherapy Dosage
5.
Med Phys ; 50(2): 958-969, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36251320

ABSTRACT

PURPOSE: Determination of reliable change of radiomics feature over time is essential and vital in delta-radiomics, but has not yet been rigorously examined. This study attempts to propose a methodological approach using reliable change index (RCI), a statistical metric to determine the reliability of quantitative biomarker changes by accounting for the baseline measurement standard error, in delta-radiomics. The use of RCI was demonstrated with the MRI data acquired from a group of prostate cancer (PCa) patients treated by 1.5 T MRI-guided radiotherapy (MRgRT). METHODS: Fifty consecutive PCa patients who underwent five-fractionated MRgRT were retrospectively included, and 1023 radiomics features were extracted from the clinical target volume (CTV) and planning target volume (PTV). The two MRI datasets acquired at the first fraction (MRI11 and MRI21) were used to calculate the baseline feature reliability against image acquisition using intraclass correlation coefficient (ICC). The RCI was constructed based on the baseline feature measurement standard deviation, ICC, and feature value differences at two time points between the fifth (MRI51) and the first fraction MRI (MRI11). The reliable change of features was determined in each patient only if the calculated RCI was over 1.96 or smaller than -1.96. The feature changes between MRI51 and MRI11 were correlated to two patient-reported quality-of-life clinical endpoints of urinary domain summary score (UDSS) and bowel domain summary score (BDSS) in 35 patients using the Spearman correlation test. Only the significant correlations between a feature that was reliably changed in ≥7 patients (20%) by RCI and an endpoint were considered as true significant correlations. RESULTS: The 352 (34.4%) and 386 (37.7%) features among all 1023 features were determined by RCI to be reliably changed in more than five (10%) patients in the CTV and PTV, respectively. Nineteen features were found reliably changed in the CTV and 31 features in the PTV, respectively, in 10 (20%) or more patients. These features were not necessarily associated with significantly different longitudinal feature values (group p-value < 0.05). Most reliably changed features in more than 10 patients had excellent or good baseline test-retest reliability ICC, while none showed poor reliability. The RCI method ruled out the features to be reliably changed when substantial feature measurement bias was presented. After applying the RCI criterion, only four and five true significant correlations were confirmed with UDSS and BDSS in the CTV, respectively, with low true significance correlation rates of 10.8% (4/37) and 17.9% (5/28). No true significant correlations were found in the PTV. CONCLUSIONS: The RCI method was proposed for delta-radiomics and demonstrated using PCa MRgRT data. The RCI has advantages over some other statistical metrics commonly used in the previous delta-radiomics studies, and is useful to reliably identify the longitudinal radiomics feature change on an individual basis. This proposed RCI method should be helpful for the development of essential feature selection methodology in delta-radiomics.


Subject(s)
Magnetic Resonance Imaging , Male , Humans , Retrospective Studies , Reproducibility of Results , Longitudinal Studies , Magnetic Resonance Imaging/methods
6.
J Cancer Res Clin Oncol ; 149(2): 841-850, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35199189

ABSTRACT

PURPOSE: To analyze and characterize the online plan adaptation of 1.5T magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) of prostate cancer (PC). METHODS: PC patients (n = 107) who received adaptive 1.5 Tesla MRgSBRT were included. Online plan adaptation was implemented by either the adapt-to-position (ATP) or adapt-to-shape (ATS) methods. Patients were assigned to the ATS group if they underwent ≥ 1 ATS fraction (n = 51); the remainder were assigned to the ATP group (n = 56). The online plan adaptation records of 535 (107 × 5) fractions were retrospectively reviewed. Rationales for ATS decision-making were determined and analyzed using predefined criteria. Statistics of ATS fractions were summarized. Associations of patient characteristics and clinical factors with ATS utilization were investigated. RESULTS: There were 87 (16.3%) ATS fractions and 448 ATP fractions (83.7%). The numbers of ATS adoptions in fractions 1-5 were 29 (29/107, 27.1%), 18 (16.8%), 15 (14.0%), 16 (15.0%), and 9 (8.4%), respectively, with significant differences in adoption frequency between fractions (p = 0.007). Other baseline patient characteristics and clinical factors were not significantly associated with ATS classification (all p > 0.05). Underlying criteria for the determination of ATS implementation comprised anatomical changes (77 fractions in 50 patients) and discrete multiple targets (15 fractions in 3 patients). No ATS utilization was determined using dosimetric or online quality assurance criteria. CONCLUSIONS: This study contributes to facilitating the establishment of a standardized protocol for online MR-guided adaptive radiotherapy in PC.


Subject(s)
Prostatic Neoplasms , Radiosurgery , Radiotherapy, Image-Guided , Male , Humans , Radiosurgery/methods , Retrospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy, Image-Guided/methods , Magnetic Resonance Spectroscopy , Adenosine Triphosphate , Radiotherapy Dosage , Magnetic Resonance Imaging/methods
7.
Magn Reson Med ; 89(5): 2088-2099, 2023 05.
Article in English | MEDLINE | ID: mdl-36572990

ABSTRACT

PURPOSE: To investigate the potential value of MRI radiomics obtained from a 1.5 T MRI-guided linear accelerator (MR-LINAC) for D'Amico high-risk prostate cancer (PC) classification in MR-guided radiotherapy (MRgRT). METHODS: One hundred seventy-six consecutive PC patients underwent 1.5 T MRgRT treatment were retrospectively enrolled. Each patient received one or two pretreatment T2 -weighted MRI scans on a 1.5 T MR-LINAC. The endpoint was to differentiate high-risk from low/intermediate-risk PC based on D'Amico criteria using MRI-radiomics. Totally 1023 features were extracted from clinical target volume (CTV) and planning target volume (PTV). Intraclass correlation coefficient of scan-rescan repeatability, feature correlation, and recursive feature elimination were used for feature dimension reduction. Least absolute shrinkage and selection operator regression was employed for model construction. Receiver operating characteristic area under the curve (AUC) analysis was used for model performance assessment in both training and testing data. RESULTS: One hundred and eleven patients fulfilled all criteria were finally included: 76 for training and 35 for testing. The constructed MRI-radiomics models extracted from CTV and PTV achieved the AUC of 0.812 and 0.867 in the training data, without significant difference (P = 0.083). The model performances remained in the testing. The sensitivity, specificity, and accuracy were 85.71%, 64.29%, and 77.14% for the PTV-based model; and 71.43%, 71.43%, and 71.43% for the CTV-based model. The corresponding AUCs were 0.718 and 0.750 (P = 0.091) for CTV- and PTV-based models. CONCLUSION: MRI-radiomics obtained from a 1.5 T MR-LINAC showed promising results in D'Amico high-risk PC stratification, potentially helpful for the future PC MRgRT. Prospective studies with larger sample sizes and external validation are warranted for further verification.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Pilot Projects , Retrospective Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy
8.
Phys Eng Sci Med ; 45(3): 915-924, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35925545

ABSTRACT

A helical fan-beam kilovoltage computed tomography (kVCT) was recently introduced into Tomotherapy units. This study aims to share the initial experience of kVCT in clinical workflow, compare its performance with that of the existing megavoltage computed tomography (MVCT), and explore its potential in adaptive planning. We retrospectively enrolled 23 patients who underwent both MVCT and kVCT scans. The clinical performance data regarding image acquisition time, nominal dose length product (DLP), registration time and registration corrections were extracted and compared. Image quality was scored by six experienced radiation therapists and quantified based on phantom measurements. CT number stability and the implementation of adaptive radiotherapy were dosimetrically evaluated by performing the dose recalculation on kVCT. Compared to MVCT, kVCT significantly reduced DLP (except the highest kVp protocol), image acquisition and registration time. KVCT obtained higher scores than MVCT on all criteria except artifacts. Phantom measurements also revealed a better image performance characterization of kVCT except for image uniformity. The CT number variation could lead to a dose difference of 0.5% for D95% of target and Dmean of organ-at-risk. For the treatment planning with kVCT, a systematic dose difference (> 1%) in PTV dose metrics was observed at regions with large longitudinal density discontinuities compared to the reference plans. The new kVCT imaging provides enhanced soft-tissue visualization. The improved efficiency with kVCT-guided treatment will allow more patients to be treated each day. In most cases, the dose calculation accuracy of kVCT images is acceptable except for regions with severe artifacts.


Subject(s)
Radiotherapy, Intensity-Modulated , Humans , Phantoms, Imaging , Retrospective Studies , Tomography, Spiral Computed/methods , Tomography, X-Ray Computed/methods
9.
Cancers (Basel) ; 14(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35884553

ABSTRACT

Background: Conventionally fractionated whole-pelvic nodal radiotherapy (WPRT) improves clinical outcome compared to prostate-only RT in high-risk prostate cancer (HR-PC). MR-guided stereotactic body radiotherapy (MRgSBRT) with concomitant WPRT represents a novel radiotherapy (RT) paradigm for HR-PC, potentially improving online image guidance and clinical outcomes. This study aims to report the preliminary clinical experiences and treatment outcome of 1.5 Tesla adaptive MRgSBRT with concomitant WPRT in HR-PC patients. Materials and methods: Forty-two consecutive HR-PC patients (72.5 ± 6.8 years) were prospectively enrolled, treated by online adaptive MRgSBRT (8 Gy(prostate)/5 Gy(WPRT) × 5 fractions) combined with androgen deprivation therapy (ADT) and followed up (median: 251 days, range: 20−609 days). Clinical outcomes were measured by gastrointestinal (GI) and genitourinary (GU) toxicities according to the Common Terminology Criteria for Adverse Events (CTCAE) Scale v. 5.0, patient-reported quality of life (QoL) with EPIC (Expanded Prostate Cancer Index Composite) questionnaire, and prostate-specific antigen (PSA) responses. Results: All MRgSBRT fractions achieved planning objectives and dose specifications of the targets and organs at risk, and they were successfully delivered. The maximum cumulative acute GI/GU grade 1 and 2 toxicity rates were 19.0%/81.0% and 2.4%/7.1%, respectively. The subacute (>30 days) GI/GU grade 1 and 2 toxicity rates were 21.4%/64.3% and 2.4%/2.4%, respectively. No grade 3 toxicities were reported. QoL showed insignificant changes in urinary, bowel, sexual, and hormonal domain scores during the follow-up period. All patients had early post-MRgSBRT biochemical responses, while biochemical recurrence (PSA nadir + 2 ng/mL) occurred in one patient at month 18. Conclusions: To our knowledge, this is the first prospective study that showed the clinical outcomes of MRgSBRT with concomitant WPRT in HR-PC patients. The early results suggested favorable treatment-related toxicities and encouraging patient-reported QoLs, but long-term follow-up is needed to confirm our early results.

10.
Vis Comput Ind Biomed Art ; 5(1): 10, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35359245

ABSTRACT

Radiomics has increasingly been investigated as a potential biomarker in quantitative imaging to facilitate personalized diagnosis and treatment of head and neck cancer (HNC), a group of malignancies associated with high heterogeneity. However, the feature reliability of radiomics is a major obstacle to its broad validity and generality in application to the highly heterogeneous head and neck (HN) tissues. In particular, feature repeatability of radiomics in magnetic resonance imaging (MRI) acquisition, which is considered a crucial confounding factor of radiomics feature reliability, is still sparsely investigated. This study prospectively investigated the acquisition repeatability of 93 MRI radiomics features in ten HN tissues of 15 healthy volunteers, aiming for potential magnetic resonance-guided radiotherapy (MRgRT) treatment of HNC. Each subject underwent four MRI acquisitions with MRgRT treatment position and immobilization using two pulse sequences of 3D T1-weighed turbo spin-echo and 3D T2-weighed turbo spin-echo on a 1.5 T MRI simulator. The repeatability of radiomics feature acquisition was evaluated in terms of the intraclass correlation coefficient (ICC), whereas within-subject acquisition variability was evaluated in terms of the coefficient of variation (CV). The results showed that MRI radiomics features exhibited heterogeneous acquisition variability and uncertainty dependent on feature types, tissues, and pulse sequences. Only a small fraction of features showed excellent acquisition repeatability (ICC > 0.9) and low within-subject variability. Multiple MRI scans improved the accuracy and confidence of the identification of reliable features concerning MRI acquisition compared to simple test-retest repeated scans. This study contributes to the literature on the reliability of radiomics features with respect to MRI acquisition and the selection of reliable radiomics features for use in modeling in future HNC MRgRT applications.

11.
Cancers (Basel) ; 14(4)2022 Feb 13.
Article in English | MEDLINE | ID: mdl-35205673

ABSTRACT

The dosimetric advantages of proton therapy (PT) treatment plans are demonstrably superior to photon-based external beam radiotherapy (EBRT) for localized prostate cancer, but the reported clinical outcomes are similar. This may be due to inadequate dose prescription, especially in high-risk disease, as indicated by the ASCENDE-RT trial. Alternatively, the lack of clinical benefits with PT may be attributable to improper dose delivery, mainly due to geometric and dosimetric uncertainties during treatment planning, as well as delivery procedures that compromise the dose conformity of treatments. Advanced high-precision PT technologies, and treatment planning and beam delivery techniques are being developed to address these uncertainties. For instance, external magnetic resonance imaging (MRI)-guided patient setup rooms are being developed to improve the accuracy of patient positioning for treatment. In-room MRI-guided patient positioning systems are also being investigated to improve the geometric accuracy of PT. Soon, high-dose rate beam delivery systems will shorten beam delivery time to within one breath hold, minimizing the effects of organ motion and patient movements. Dual-energy photon-counting computed tomography and high-resolution Monte Carlo-based treatment planning systems are available to minimize uncertainties in dose planning calculations. Advanced in-room treatment verification tools such as prompt gamma detector systems will be used to verify the depth of PT. Clinical implementation of these new technologies is expected to improve the accuracy and dose conformity of PT in the treatment of localized prostate cancers, and lead to better clinical outcomes. Improvement in dose conformity may also facilitate dose escalation, improving local control and implementation of hypofractionation treatment schemes to improve patient throughput and make PT more cost effective.

12.
Quant Imaging Med Surg ; 12(2): 1585-1607, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35111651

ABSTRACT

Magnetic resonance guided radiotherapy (MRgRT), enabled by the clinical introduction of the integrated MRI and linear accelerator (MR-LINAC), is a novel technique for prostate cancer (PCa) treatment, promising to further improve clinical outcome and reduce toxicity. The role of prostate MRI has been greatly expanded from the traditional PCa diagnosis to also PCa screening, treatment and surveillance. Diagnostic prostate MRI has been relatively familiar in the community, particularly with the development of Prostate Imaging - Reporting and Data System (PI-RADS). But, on the other hand, the use of MRI in the emerging clinical practice of PCa MRgRT, which is substantially different from that in PCa diagnosis, has been so far sparsely presented in the medical literature. This review attempts to give a comprehensive overview of MRI acquisition techniques currently used in the clinical workflows of PCa MRgRT, from treatment planning to online treatment guidance, in order to promote MRI practice and research for PCa MRgRT. In particular, the major differences in the MRI acquisition of PCa MRgRT from that of diagnostic prostate MRI are demonstrated and explained. Limitations in the current MRI acquisition for PCa MRgRT are analyzed. The future developments of MRI in the PCa MRgRT are also discussed.

13.
Asia Pac J Clin Oncol ; 18(5): e369-e377, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35073460

ABSTRACT

PURPOSE: To assess the image quality and delineation value of compressed sensing (CS)-accelerated 3D T2W turbo-spin-echo (TSE) sequence for radiotherapy treatment planning (RTP) of prostate cancer. METHODS: An optimized CS-accelerated 3D-T2W-TSE was determined by volunteer imaging and applied for clinical RTP-MRI. This optimized CS-accelerated planning MRI and the standardized adaptive MRI acquired at 1.5T were retrospectively analyzed in 26 prostate cancer patients who were to receive MR-guided radiotherapy. Signal-to-noise ratio (SNR) and relative contrast ratio (CR) were quantitatively assessed. Image quality and artifacts were qualitatively assessed using a five-point scale rating. Delineation value in the prostate and organs-at-risk (OARs) was also rated and compared. Wilcoxon signed-rank test was used for SNR, relative CR, and rating comparisons. The interobserver rating agreement was evaluated by percent agreement. RESULTS: Significantly better SNR and relative CR in the prostate, rectum, bowel, penis, and penile bulb, while significantly worse in the cauda equina, were observed on the planning MRI. Significantly better ratings of image quality and artifacts were given to the planning MRI, with much less Gibbs ringing and reconstruction artifacts. Significantly better delineation value rating was achieved on the planning MRI in the prostate, seminal vesicle, rectum, penis, penile bulb, and testes, while significantly worse in the cauda equina. A strong to almost perfect interobserver rating agreement was obtained. CONCLUSION: This study suggested that CS acceleration is applicable and valuable in prostate RTP-MRI. CS-accelerated 3D-T2W-TSE images should benefit the delineation of prostate and many OARs.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Acceleration , Artifacts , Humans , Magnetic Resonance Imaging/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Retrospective Studies
14.
J Cancer Res Clin Oncol ; 148(7): 1749-1759, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34363123

ABSTRACT

PURPOSE: Performance of 3D-T1W-TSE has been proven superior to 3D-MP-GRE at 3 T on brain metastases (BM) contrast-enhanced (CE) MRI. However, its performance at 1.5 T is largely unknown and sparsely reported. This study aims to assess image quality, lesion detectability and conspicuity of 1.5 T 3D-T1W-TSE on planning MRI of frameless BM radiotherapy. METHODS: 94 BM patients to be treated by frameless brain radiotherapy were scanned using 3D-T1W-TSE with immobilization on multi-vendor 1.5 T MRI-simulators. BMs were jointly diagnosed by 4 reviewers. Enhanced lesion conspicuity was quantitatively assessed by calculating contrast ratio (CR) and contrast-to-noise ratio (CNR). Signal-to-noise ratio (SNR) reduction of white matter due to the use of flexible coil was assessed. Lesion detectability and conspicuity were compared between 1.5 T planning MRI and 3 T diagnostic MRI by an oncologist and a radiologist in 10 patients. RESULTS: 497 BMs were jointly diagnosed. The CR and CNR were 75.2 ± 39.9% and 14.2 ± 8.1, respectively. SNR reduced considerably from 31.7 ± 8.3 to 21.9 ± 5.4 with the longer distance to coils. 3 T diagnostic MRI and 1.5 T planning MRI yielded exactly the same detection of 84 BMs. Qualitatively, lesion conspicuity at 1.5 T was not inferior to that at 3 T. Quantitatively, lower brain SNR and lesion CNR were found at 1.5 T, while lesion CR at 1.5 T was highly comparable to that at 3 T. CONCLUSION: 1.5 T 3D-T1W-TSE planning MRI of frameless BM radiotherapy was comprehensively assessed. Highly comparable BM detectability and conspicuity were achieved by 1.5 T planning MRI compared to 3 T diagnostic MRI. 1.5 T 3D-T1W-TSE should be valuable for frameless brain radiotherapy planning.


Subject(s)
Brain Neoplasms , Radiation Oncology , Brain , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Contrast Media , Humans , Magnetic Resonance Imaging/methods
15.
Pract Radiat Oncol ; 12(1): e56-e61, 2022.
Article in English | MEDLINE | ID: mdl-34520872

ABSTRACT

Magnetic resonance-guided radiation therapy is reported for treating patients with an insertable cardiac monitor and implantable cardiac pacemakers. All treatments were delivered using a 1.5 T MR-Linac. Among the 4 patients, 2 were treated with stereotactic body radiation therapy at a dose of 40 Gy in 5 fractions. A clinical safety protocol was developed to address the decision-making and patient selection, as well as the clarified responsibilities of different parties for management of patients with cardiovascular implantable electronic devices. Dose estimation based on out-of-field dose data are necessary for cardiovascular implantable electronic devices located outside the treatment fields.


Subject(s)
Defibrillators, Implantable , Pacemaker, Artificial , Electronics , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Particle Accelerators
16.
Cancers (Basel) ; 13(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638348

ABSTRACT

BACKGROUND: Magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) offers the potential for achieving better prostate cancer (PC) treatment outcomes. This study reports the preliminary clinical results of 1.5T MRgSBRT in localized PC, based on both clinician-reported outcome measurement (CROM) and patient-reported outcome measurement (PROM). METHODS: Fifty-one consecutive localized PC patients were prospectively enrolled with a median follow-up of 199 days. MRgSBRT was delivered in five fractions of 7.25-8 Gy with daily online adaptation. Clinician-reported gastrointestinal (GI) and genitourinary (GU) adverse events based on the Common Terminology Criteria for Adverse Events (CTCAE) Scale v. 5.0 were assessed. The Expanded Prostate Cancer Index Composite Questionnaire was collected at baseline, 1 month, and every 3 months thereafter. Serial prostate-specific antigen measurements were longitudinally recorded. RESULTS: The maximum cumulative clinician-reported grade ≥ 2 acute GU and GI toxicities were 11.8% (6/51) and 2.0% (1/51), respectively, while grade ≥ 2 subacute GU and GI toxicities were 2.3% (1/43) each. Patient-reported urinary, bowel, and hormonal domain summary scores were reduced at 1 month, then gradually returned to baseline levels, with the exception of the sexual domain. Domain-specific subscale scores showed similar longitudinal changes. All patients had early post-MRgSBRT biochemical responses. CONCLUSIONS: The finding of low toxicity supports the accumulation of clinical evidence for 1.5T MRgSBRT in localized PC.

17.
Phys Med Biol ; 66(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34700308

ABSTRACT

This study aims to quantify the relative contributions of phantom scatter, collimator scatter and head leakage to the out-of-field doses (OFDs) of both static fields and clinical intensity-modulated radiation therapy (IMRT) treatments in a 1.5 T MR-Linac. The OFDs of static fields were measured at increasing distances from the field edge in an MR-conditional water phantom. Inline scans at depths of dmax (14 mm), 50 and 100 mm were performed for static fields of 5 × 5, 10 × 10 and 15 × 15 cm2under three different conditions: full scatter, with phantom scatter prevented, and head leakage only. Crossline scans at isocenter and offset positions were performed in full scatter condition. EBT3 radiochromic films were placed at 100 mm depth of solid water phantom to measure the OFD of clinical IMRT plans. All water tank data were normalized to Dmax of a 10 × 10 cm2field and the film results were presented as a fraction of the target mean dose.The OFD in the inline direction varied from 3.5% (15 × 15 cm2, 100 mm depth, 50 mm distance) to 0.014% (5 × 5 cm2, dmax, 400 mm distance). For all static fields, the collimator scatter was higher than the phantom scatter and head leakage at a distance of 100-400 mm. Head leakage remained the smallest among the three components, except at long distances (>375 mm) with small field size. Compared to the inline scans, the crossline scans at the isocenter showed higher doses at distances longer than 80 mm. All crossline profiles at longitudinal offset positions showed a cone shape with laterally shifted maxima. The OFD of IMRT deliveries varied with different target size. For prostate stereotactic body radiation therapy (SBRT) treatment, the OFD decreased from 2% to 0.03% at a distance of 50-500 mm. The OFDs have been measured for a 1.5 T MR-Linac. The presented dosimetric data are valuable for radiation safety assessments on patients treated with the MR-Linac, such as evaluating carcinogenic risk and radiation exposure to cardiac implantable electronic devices.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators , Phantoms, Imaging , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Water
18.
Quant Imaging Med Surg ; 11(5): 1870-1887, 2021 May.
Article in English | MEDLINE | ID: mdl-33936971

ABSTRACT

BACKGROUND: MRI pulse sequences and imaging parameters substantially influence the variation of MRI radiomics features, thus impose a critical challenge on MRI radiomics reproducibility and reliability. This study aims to prospectively investigate the impact of various imaging parameters on MRI radiomics features in a 3D T2-weighted (T2W) turbo-spin-echo (TSE) pulse sequence for MR-guided-radiotherapy (MRgRT). METHODS: An anthropomorphic phantom was scanned using a 3D-T2W-TSE MRgRT sequence at 1.5T under a variety of acquisition imaging parameter changes. T1 and T2 relaxation times of the phantom were also measured. 93 first-order and texture radiomics features in the original and 14 transformed images, yielding 1,395 features in total, were extracted from 10 volumes-of-interest (VOIs). The percentage deviation (d%) of radiomics feature values from the baseline values and intra-class correlation coefficient (ICC) with the baseline were calculated. Robust radiomics features were identified based on the excellent agreement of radiomics feature values with the baseline, i.e., the averaged d% <5% and ICC >0.90 in all VOIs for all imaging parameter variations. RESULTS: The radiomics feature values changed considerably but to different degrees with different imaging parameter adjustments, in the ten VOIs. The deviation d% ranged from 0.02% to 321.3%, with a mean of 12.5% averaged for all original features in all ten VOIs. First-order and GLCM features were generally more robust to imaging parameters than other features in the original images. There were also significantly different radiomics feature values (ANOVA, P<0.001) between the original and the transformed images, exhibiting quite different robustness to imaging parameters. 330 out of 1395 features (23.7%) robust to imaging parameters were identified. GLCM and GLSZM features had the most (42.5%, 153/360) and least (3.8%, 9/240) robust features in the original and transformed images, respectively. CONCLUSIONS: This study helps better understand the quantitative dependence of radiomics feature values on imaging parameters in a 3D-T2W-TSE sequence for MRgRT. Imaging parameter heterogeneity should be considered as a significant source of radiomics variability and uncertainty, which must be well harmonized for reliable clinical use. The identified robust features to imaging parameters are helpful for the pre-selection of radiomics features for reliable radiomics modeling.

19.
Phys Med Biol ; 66(6): 065021, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33607641

ABSTRACT

Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.


Subject(s)
Air , Magnetic Resonance Imaging/methods , Particle Accelerators , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Skin/radiation effects , Benchmarking , Electrons , Humans , Ions , Magnetic Fields , Phantoms, Imaging , Radiotherapy Dosage , Reproducibility of Results
20.
Magn Reson Med ; 85(6): 3434-3446, 2021 06.
Article in English | MEDLINE | ID: mdl-33404129

ABSTRACT

PURPOSE: To prospectively investigate the impact of image reconstruction on MRI radiomics features. METHODS: An anthropomorphic phantom was scanned at 1.5 T using a standardized sequence for MR-guided radiotherapy under SENSE and compressed-SENSE reconstruction settings. A total of 93 first-order and texture radiomics features in 10 volumes of interest were assessed based on (1) accuracy measured by the percentage deviation from the reference, (2) robustness on reconstruction in all volumes of interest measured by the intraclass correlation coefficient, and (3) repeatability measured by the coefficient of variance over the repetitive acquisitions. Finally, reliable and unreliable radiomics features were comprehensively determined based on their accuracy, robustness, and repeatability. RESULTS: Better accuracy and robustness of the radiomics features were achieved under SENSE than compressed-SENSE reconstruction. The feature accuracy under SENSE reconstruction was more affected by acceleration factor than direction, whereas under compressed-SENSE reconstruction, accuracy was substantially impacted by the increasing denoising levels. Feature repeatability was dependent more on feature types than on reconstruction. A total of 45 reliable features and 13 unreliable features were finally determined for SENSE, compared with 22 reliable and 26 unreliable features for compressed SENSE. First-order and gray-level co-occurrence matrix features were generally more reliable than other features. CONCLUSION: Radiomics features could be substantially affected by MRI reconstruction, so precautions need to be taken regarding their reliability for clinical use. This study helps the guidance of the preselection of reliable radiomics features and the preclusion of unreliable features in MR-guided radiotherapy.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...