Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37606045

ABSTRACT

Systemic lupus erythematosus (SLE) affects 1 in 537 Black women, which is >2-fold more than White women. Black patients develop the disease at a younger age, have more severe symptoms, and have a greater chance of early mortality. We used a multiomics approach to uncover ancestry-associated immune alterations in patients with SLE and healthy controls that may contribute biologically to disease disparities. Cell composition, signaling, epigenetics, and proteomics were evaluated by mass cytometry; droplet-based single-cell transcriptomics and proteomics; and bead-based multiplex soluble mediator levels in plasma. We observed altered whole blood frequencies and enhanced activity in CD8+ T cells, B cells, monocytes, and DCs in Black patients with more active disease. Epigenetic modifications in CD8+ T cells (H3K27ac) could distinguish disease activity level in Black patients and differentiate Black from White patient samples. TLR3/4/7/8/9-related gene expression was elevated in immune cells from Black patients with SLE, and TLR7/8/9 and IFN-α phospho-signaling and cytokine responses were heightened even in immune cells from healthy Black control patients compared with White individuals. TLR stimulation of healthy immune cells recapitulated the ancestry-associated SLE immunophenotypes. This multiomic resource defines ancestry-associated immune phenotypes that differ between Black and White patients with SLE, which may influence the course and severity of SLE and other diseases.


Subject(s)
B-Lymphocytes , Lupus Erythematosus, Systemic , Female , Humans , Black People , CD8-Positive T-Lymphocytes , Lupus Erythematosus, Systemic/genetics , Phenotype , White People
2.
J Crohns Colitis ; 17(5): 804-815, 2023 May 03.
Article in English | MEDLINE | ID: mdl-36571819

ABSTRACT

BACKGROUND AND AIMS: Current understanding of histone post-translational modifications [histone modifications] across immune cell types in patients with inflammatory bowel disease [IBD] during remission and flare is limited. The present study aimed to quantify histone modifications at a single-cell resolution in IBD patients during remission and flare and how they differ compared to healthy controls. METHODS: We performed a case-control study of 94 subjects [83 IBD patients and 11 healthy controls]. IBD patients had either ulcerative colitis [n = 38] or Crohn's disease [n = 45] in clinical remission or flare. We used epigenetic profiling by time-of-flight [EpiTOF] to investigate changes in histone modifications within peripheral blood mononuclear cells from IBD patients. RESULTS: We discovered substantial heterogeneity in histone modifications across multiple immune cell types in IBD patients. They had a higher proportion of less differentiated CD34+ haematopoietic progenitors, and a subset of CD56bright natural killer [NK] cells and γδ T cells characterized by distinct histone modifications associated with gene transcription. The subset of CD56bright NK cells had increases in several histone acetylations. An epigenetically defined subset of NK cells was associated with higher levels of C-reactive protein in peripheral blood. CD34+ monocytes from IBD patients had significantly decreased cleaved H3T22, suggesting they were epigenetically primed for macrophage differentiation. CONCLUSION: We describe the first systems-level quantification of histone modifications across immune cells from IBD patients at a single-cell resolution, revealing the increased epigenetic heterogeneity that is not possible with traditional ChIP-seq profiling. Our data open new directions in investigating the association between histone modifications and IBD pathology using other epigenomic tools.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Histones/metabolism , Leukocytes, Mononuclear/metabolism , Case-Control Studies , Protein Processing, Post-Translational
3.
Nat Commun ; 12(1): 5417, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521836

ABSTRACT

COVID-19 is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. Here we develop three protein arrays to measure IgG autoantibodies associated with connective tissue diseases, anti-cytokine antibodies, and anti-viral antibody responses in serum from 147 hospitalized COVID-19 patients. Autoantibodies are identified in approximately 50% of patients but in less than 15% of healthy controls. When present, autoantibodies largely target autoantigens associated with rare disorders such as myositis, systemic sclerosis and overlap syndromes. A subset of autoantibodies targeting traditional autoantigens or cytokines develop de novo following SARS-CoV-2 infection. Autoantibodies track with longitudinal development of IgG antibodies recognizing SARS-CoV-2 structural proteins and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.


Subject(s)
Autoantibodies/immunology , COVID-19/immunology , Immunoglobulin G/immunology , SARS-CoV-2/immunology , Aged , Antibodies, Antinuclear/blood , Antibodies, Antinuclear/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Autoantibodies/blood , Autoantigens/immunology , Connective Tissue Diseases/immunology , Cytokines/immunology , Female , Hospitalization , Humans , Immunoglobulin G/blood , Male , Middle Aged , SARS-CoV-2/pathogenicity , Viral Proteins/immunology
4.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34174187

ABSTRACT

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Subject(s)
Epigenomics , Immunity/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Single-Cell Analysis , Transcription, Genetic , Vaccination , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Antigens, CD34/metabolism , Antiviral Agents/pharmacology , Cellular Reprogramming , Chromatin/metabolism , Cytokines/biosynthesis , Drug Combinations , Female , Gene Expression Regulation , Histones/metabolism , Humans , Immunity, Innate/genetics , Influenza A Virus, H5N1 Subtype/drug effects , Influenza A Virus, H5N1 Subtype/immunology , Interferon Type I/metabolism , Male , Myeloid Cells/metabolism , Polysorbates/pharmacology , Squalene/pharmacology , Toll-Like Receptors/metabolism , Transcription Factor AP-1/metabolism , Transcriptome/genetics , Young Adult , alpha-Tocopherol/pharmacology
5.
Nat Immunol ; 22(6): 711-722, 2021 06.
Article in English | MEDLINE | ID: mdl-34017121

ABSTRACT

Chromatin undergoes extensive reprogramming during immune cell differentiation. Here we report the repression of controlled histone H3 amino terminus proteolytic cleavage (H3ΔN) during monocyte-to-macrophage development. This abundant histone mark in human peripheral blood monocytes is catalyzed by neutrophil serine proteases (NSPs) cathepsin G, neutrophil elastase and proteinase 3. NSPs are repressed as monocytes mature into macrophages. Integrative epigenomic analysis reveals widespread H3ΔN distribution across the genome in a monocytic cell line and primary monocytes, which becomes largely undetectable in fully differentiated macrophages. H3ΔN is enriched at permissive chromatin and actively transcribed genes. Simultaneous NSP depletion in monocytic cells results in H3ΔN loss and further increase in chromatin accessibility, which likely primes the chromatin for gene expression reprogramming. Importantly, H3ΔN is reduced in monocytes from patients with systemic juvenile idiopathic arthritis, an autoinflammatory disease with prominent macrophage involvement. Overall, we uncover an epigenetic mechanism that primes the chromatin to facilitate macrophage development.


Subject(s)
Arthritis, Juvenile/immunology , Cell Differentiation/immunology , Epigenesis, Genetic/immunology , Histones/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/immunology , Adolescent , Arthritis, Juvenile/blood , Arthritis, Juvenile/genetics , CRISPR-Cas Systems/genetics , Cathepsin G/genetics , Cathepsin G/metabolism , Cell Differentiation/genetics , Cell Nucleus/metabolism , Child , Child, Preschool , Chromatin/metabolism , Enzyme Assays , Epigenomics , Female , Gene Knockout Techniques , Humans , Jurkat Cells , Leukocyte Elastase/genetics , Leukocyte Elastase/metabolism , Leukocytes, Mononuclear/immunology , Macrophages/metabolism , Male , Myeloblastin/genetics , Myeloblastin/metabolism , Primary Cell Culture , Proteolysis , RNA-Seq , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , THP-1 Cells , Young Adult
6.
medRxiv ; 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33532787

ABSTRACT

Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), is associated with a wide range of clinical manifestations, including autoimmune features and autoantibody production. We developed three different protein arrays to measure hallmark IgG autoantibodies associated with Connective Tissue Diseases (CTDs), Anti-Cytokine Antibodies (ACA), and anti-viral antibody responses in 147 hospitalized COVID-19 patients in three different centers. Autoantibodies were identified in approximately 50% of patients, but in <15% of healthy controls. When present, autoantibodies largely targeted autoantigens associated with rare disorders such as myositis, systemic sclerosis and CTD overlap syndromes. Anti-nuclear antibodies (ANA) were observed in ∼25% of patients. Patients with autoantibodies tended to demonstrate one or a few specificities whereas ACA were even more prevalent, and patients often had antibodies to multiple cytokines. Rare patients were identified with IgG antibodies against angiotensin converting enzyme-2 (ACE-2). A subset of autoantibodies and ACA developed de novo following SARS-CoV-2 infection while others were transient. Autoantibodies tracked with longitudinal development of IgG antibodies that recognized SARS-CoV-2 structural proteins such as S1, S2, M, N and a subset of non-structural proteins, but not proteins from influenza, seasonal coronaviruses or other pathogenic viruses. COVID-19 patients with one or more autoantibodies tended to have higher levels of antibodies against SARS-CoV-2 Nonstructural Protein 1 (NSP1) and Methyltransferase (ME). We conclude that SARS-CoV-2 causes development of new-onset IgG autoantibodies in a significant proportion of hospitalized COVID-19 patients and are positively correlated with immune responses to SARS-CoV-2 proteins.

7.
Nat Rev Rheumatol ; 15(6): 340-354, 2019 06.
Article in English | MEDLINE | ID: mdl-31065108

ABSTRACT

Cells, the basic units of life, have striking differences at transcriptomic, proteomic and epigenomic levels across tissues, organs, organ systems and organisms. The coordination of individual immune cells is essential for the generation of effective immune responses to pathogens while immune tolerance is maintained to protect the host. In rheumatic diseases, when immune responses are dysregulated, pathologically important cells might represent only a small fraction of the immune system. Interrogation of the contributions of individual immune cells to pathogenesis and disease progression should therefore reveal important insights into the complicated aetiology of rheumatic diseases. Technological advances are enabling the high-dimensional dissection of single cells at multiple omics levels, which could facilitate the identification of dysregulated molecular mechanisms in patients with rheumatic diseases and the discovery of new therapeutic targets and biomarkers. The single-cell technologies that have been developed over the past decade and the experimental platforms that enable multi-omics integrative analyses have already made inroads into immunology-related fields of study and have potential for use in rheumatology. Layers of omics data derived from single cells are likely to fundamentally change our understanding of the molecular pathways that underpin the pathogenesis of rheumatic diseases.


Subject(s)
Rheumatic Diseases/metabolism , Single-Cell Analysis , Epigenomics , Gene Expression Profiling , Humans , Proteomics , Rheumatic Diseases/etiology , Rheumatic Diseases/genetics , Rheumatic Diseases/pathology , Single-Cell Analysis/methods
8.
Biosens Bioelectron ; 130: 338-343, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30269961

ABSTRACT

Gene expression analysis at the point-of-care is important for rapid disease diagnosis, but traditional techniques are limited by multiplexing capabilities, bulky equipment, and cost. We present a gene expression analysis platform using a giant magnetoresistive (GMR) biosensor array, which allows multiplexed transcript detection and quantification through cost-effective magnetic detection. In this work, we have characterized the sensitivity, dynamic range, and quantification accuracy of Polymerase chain reaction (PCR)-amplified complementary DNA (cDNA) on the GMR for the reference gene GAPDH. A synthetic GAPDH single-stranded DNA (ssDNA) standard was used to calibrate the detection, and ssDNA dilutions were qPCR-amplified to obtain a standard curve. We demonstrate that the GMR platform provides a dynamic range of 4 orders of magnitude and a limit of detection of 1 pM and 0.1 pM respectively for 15 and 18-cycle amplified synthetic GAPDH PCR products. The quantitative results of GMR analysis of cell-line RNA were confirmed by qPCR.


Subject(s)
Biomarkers/chemistry , Biosensing Techniques , DNA, Complementary/genetics , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/isolation & purification , DNA, Complementary/chemistry , DNA, Single-Stranded/chemistry , Gene Expression Profiling/methods , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/chemistry , Humans , Magnetics , Point-of-Care Systems
9.
Clin Immunol ; 196: 40-48, 2018 11.
Article in English | MEDLINE | ID: mdl-29960011

ABSTRACT

Modifications of histone proteins are fundamental to the regulation of epigenetic phenotypes. Dysregulations of histone modifications have been linked to the pathogenesis of diverse human diseases. However, identifying differential histone modifications in patients with immune-mediated diseases has been challenging, in part due to the lack of a powerful analytic platform to study histone modifications in the complex human immune system. We recently developed a highly multiplexed platform, Epigenetic landscape profiling using cytometry by Time-Of-Flight (EpiTOF), to analyze the global levels of a broad array of histone modifications in single cells using mass cytometry. In this review, we summarize the development of EpiTOF and discuss its potential applications in biomedical research. We anticipate that this platform will provide new insights into the roles of epigenetic regulation in hematopoiesis, immune cell functions, and immune system aging, and reveal aberrant epigenetic patterns associated with immune-mediated diseases.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Histone Code , Histones/metabolism , Single-Cell Analysis/methods , Flow Cytometry , Humans , Mass Spectrometry , Protein Processing, Post-Translational
10.
Cell ; 173(6): 1385-1397.e14, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29706550

ABSTRACT

Post-translational modifications of histone proteins and exchanges of histone variants of chromatin are central to the regulation of nearly all DNA-templated biological processes. However, the degree and variability of chromatin modifications in specific human immune cells remain largely unknown. Here, we employ a highly multiplexed mass cytometry analysis to profile the global levels of a broad array of chromatin modifications in primary human immune cells at the single-cell level. Our data reveal markedly different cell-type- and hematopoietic-lineage-specific chromatin modification patterns. Differential analysis between younger and older adults shows that aging is associated with increased heterogeneity between individuals and elevated cell-to-cell variability in chromatin modifications. Analysis of a twin cohort unveils heritability of chromatin modifications and demonstrates that aging-related chromatin alterations are predominantly driven by non-heritable influences. Together, we present a powerful platform for chromatin and immunology research. Our discoveries highlight the profound impacts of aging on chromatin modifications.


Subject(s)
Aging , Chromatin/chemistry , Epigenesis, Genetic , Adolescent , Adult , Aged , Cell Lineage , Cell Separation , Diseases in Twins , Female , Flow Cytometry , Histones/metabolism , Humans , Immune System , Immunophenotyping , Leukocytes, Mononuclear/cytology , Male , Middle Aged , Monocytes/cytology , Principal Component Analysis , Protein Processing, Post-Translational , Registries , Young Adult
11.
JCI Insight ; 1(21): e89073, 2016 Dec 22.
Article in English | MEDLINE | ID: mdl-28018971

ABSTRACT

Systemic sclerosis (SSc) is a rare autoimmune disease with the highest case-fatality rate of all connective tissue diseases. Current efforts to determine patient response to a given treatment using the modified Rodnan skin score (mRSS) are complicated by interclinician variability, confounding, and the time required between sequential mRSS measurements to observe meaningful change. There is an unmet critical need for an objective metric of SSc disease severity. Here, we performed an integrated, multicohort analysis of SSc transcriptome data across 7 datasets from 6 centers composed of 515 samples. Using 158 skin samples from SSc patients and healthy controls recruited at 2 centers as a discovery cohort, we identified a 415-gene expression signature specific for SSc, and validated its ability to distinguish SSc patients from healthy controls in an additional 357 skin samples from 5 independent cohorts. Next, we defined the SSc skin severity score (4S). In every SSc cohort of skin biopsy samples analyzed in our study, 4S correlated significantly with mRSS, allowing objective quantification of SSc disease severity. Using transcriptome data from the largest longitudinal trial of SSc patients to date, we showed that 4S allowed us to objectively monitor individual SSc patients over time, as (a) the change in 4S of a patient is significantly correlated with change in the mRSS, and (b) the change in 4S at 12 months of treatment could predict the change in mRSS at 24 months. Our results suggest that 4S could be used to distinguish treatment responders from nonresponders prior to mRSS change. Our results demonstrate the potential clinical utility of a novel robust molecular signature and a computational approach to SSc disease severity quantification.

12.
Genes Dev ; 28(16): 1758-71, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25128496

ABSTRACT

The dynamic reversible methylation of lysine residues on histone proteins is central to chromatin biology. Key components are demethylase enzymes, which remove methyl moieties from lysine residues. KDM2A, a member of the Jumonji C domain-containing histone lysine demethylase family, specifically targets lower methylation states of H3K36. Here, structural studies reveal that H3K36 specificity for KDM2A is mediated by the U-shaped threading of the H3K36 peptide through a catalytic groove within KDM2A. The side chain of methylated K36 inserts into the catalytic pocket occupied by Ni(2+) and cofactor, where it is positioned and oriented for demethylation. Key residues contributing to K36me specificity on histone H3 are G33 and G34 (positioned within a narrow channel), P38 (a turn residue), and Y41 (inserts into its own pocket). Given that KDM2A was found to also bind the H3K36me3 peptide, we postulate that steric constraints could prevent α-ketoglutarate from undergoing an "off-line"-to-"in-line" transition necessary for the demethylation reaction. Furthermore, structure-guided substitutions of residues in the KDM2A catalytic pocket abrogate KDM2A-mediated functions important for suppression of cancer cell phenotypes. Together, our results deduce insights into the molecular basis underlying KDM2A regulation of the biologically important methylated H3K36 mark.


Subject(s)
Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Models, Molecular , Animals , Binding Sites , Cell Line , Genomic Instability , Jumonji Domain-Containing Histone Demethylases/genetics , Methylation , Mice , Mutation , Protein Binding , Protein Structure, Quaternary
13.
Mol Cell ; 50(3): 444-56, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23583077

ABSTRACT

Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or dimethylated lysine. The domain is broadly specific for methylated lysine ("pan-specific") and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferase GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.


Subject(s)
Lysine/genetics , Lysine/metabolism , Proteome/genetics , Proteome/metabolism , Animals , Cell Line , HEK293 Cells , Humans , Insecta , Methylation , Protein Structure, Tertiary , Proteomics/methods , Sf9 Cells , Sirtuin 1/genetics , Sirtuin 1/metabolism
14.
Nature ; 484(7392): 115-9, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22398447

ABSTRACT

The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1--a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing--contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.


Subject(s)
DNA Replication , Growth Disorders/metabolism , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Micrognathism/metabolism , Origin Recognition Complex/chemistry , Origin Recognition Complex/metabolism , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle , Cell Line , Chromatin/genetics , Chromatin/metabolism , Congenital Microtia , Crystallography, X-Ray , DNA Replication/genetics , Disease Models, Animal , Dwarfism/genetics , Dwarfism/metabolism , Ear/abnormalities , Growth Disorders/genetics , Histones/genetics , Humans , Methylation , Micrognathism/genetics , Models, Molecular , Origin Recognition Complex/genetics , Patella/abnormalities , Patella/metabolism , Protein Structure, Tertiary , Replication Origin , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
15.
Nat Med ; 18(1): 111-9, 2011 Dec 04.
Article in English | MEDLINE | ID: mdl-22138751

ABSTRACT

Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes--differentiated epithelial cells crucial for filtration--are thought to lack substantial capacity for regeneration. Here we show that podocytes rapidly lose differentiation markers and enter the cell cycle in adult mice in which the telomerase protein component TERT is conditionally expressed. Transgenic TERT expression in mice induces marked upregulation of Wnt signaling and disrupts glomerular structure, resulting in a collapsing glomerulopathy resembling those in human disease, including HIV-associated nephropathy (HIVAN). Human and mouse HIVAN kidneys show increased expression of TERT and activation of Wnt signaling, indicating that these are general features of collapsing glomerulopathies. Silencing transgenic TERT expression or inhibiting Wnt signaling through systemic expression of the Wnt inhibitor Dkk1 in either TERT transgenic mice or in a mouse model of HIVAN results in marked normalization of podocytes, including rapid cell-cycle exit, re-expression of differentiation markers and improved filtration barrier function. These data reveal an unexpected capacity of podocytes to reversibly enter the cell cycle, suggest that podocyte renewal may contribute to glomerular homeostasis and implicate the telomerase and Wnt-ß-catenin pathways in podocyte proliferation and disease.


Subject(s)
AIDS-Associated Nephropathy/metabolism , Kidney Glomerulus/metabolism , Kidney/metabolism , Podocytes/cytology , Telomerase/metabolism , Wnt Signaling Pathway , AIDS-Associated Nephropathy/genetics , Animals , Cell Differentiation , Cell Proliferation , Disease Models, Animal , Gene Expression Regulation , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kidney/cytology , Kidney Glomerulus/cytology , Kidney Glomerulus/growth & development , Mice , Mice, Transgenic , Podocytes/metabolism , Telomerase/genetics
16.
Mol Cell ; 44(4): 609-20, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-22099308

ABSTRACT

The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here, we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together, our findings establish H3K36me2 as the primary product generated by NSD2 and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.


Subject(s)
Cell Transformation, Neoplastic , Gene Expression Regulation , Histone-Lysine N-Methyltransferase , Histones/metabolism , Lysine/metabolism , Multiple Myeloma/genetics , Recombinant Proteins/metabolism , Repressor Proteins , Signal Transduction/genetics , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromatin , Gene Expression Profiling , Genome-Wide Association Study , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Humans , Methylation , Mice , Mice, SCID , Multiple Myeloma/enzymology , Multiple Myeloma/pathology , Recombinant Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription, Genetic , Translocation, Genetic , Xenograft Model Antitumor Assays
17.
Nat Immunol ; 12(1): 29-36, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21131967

ABSTRACT

Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-κB subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-κB-activation-linked phosphorylation of RelA at Ser311 by protein kinase C-ζ (PKC-ζ) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.


Subject(s)
Arthritis, Rheumatoid/immunology , NF-kappa B/metabolism , Protein Methyltransferases/metabolism , Transcription Factor RelA/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Chromatin Assembly and Disassembly/genetics , DNA Methylation , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Inflammation , Lysine/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Protein Binding/genetics , Protein Methyltransferases/genetics , Protein Methyltransferases/immunology , RNA, Small Interfering/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Transcription Factor RelA/genetics , Transcription Factor RelA/immunology
18.
PLoS One ; 4(8): e6789, 2009 Aug 26.
Article in English | MEDLINE | ID: mdl-19956676

ABSTRACT

Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.


Subject(s)
Chromatin/metabolism , Epigenesis, Genetic , Protein Array Analysis/methods , Proteome/analysis , Signal Transduction , Antibodies/analysis , Genome, Human , Histones/metabolism , Humans , Protein Binding
19.
J Biol Chem ; 284(49): 34283-95, 2009 Dec 04.
Article in English | MEDLINE | ID: mdl-19808676

ABSTRACT

The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.


Subject(s)
Histone-Lysine N-Methyltransferase/chemistry , Animals , Cell Line, Tumor , Chromatin/chemistry , DNA/chemistry , Genetic Vectors , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Humans , Lysine/chemistry , Mass Spectrometry/methods , Nucleosomes/chemistry , Protein Processing, Post-Translational , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Xenopus laevis
20.
Nature ; 460(7251): 66-72, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19571879

ABSTRACT

Stem cells are controlled, in part, by genetic pathways frequently dysregulated during human tumorigenesis. Either stimulation of Wnt/beta-catenin signalling or overexpression of telomerase is sufficient to activate quiescent epidermal stem cells in vivo, although the mechanisms by which telomerase exerts these effects are not understood. Here we show that telomerase directly modulates Wnt/beta-catenin signalling by serving as a cofactor in a beta-catenin transcriptional complex. The telomerase protein component TERT (telomerase reverse transcriptase) interacts with BRG1 (also called SMARCA4), a SWI/SNF-related chromatin remodelling protein, and activates Wnt-dependent reporters in cultured cells and in vivo. TERT serves an essential role in formation of the anterior-posterior axis in Xenopus laevis embryos, and this defect in Wnt signalling manifests as homeotic transformations in the vertebrae of Tert(-/-) mice. Chromatin immunoprecipitation of the endogenous TERT protein from mouse gastrointestinal tract shows that TERT physically occupies gene promoters of Wnt-dependent genes. These data reveal an unanticipated role for telomerase as a transcriptional modulator of the Wnt/beta-catenin signalling pathway.


Subject(s)
Chromatin/genetics , Signal Transduction , Telomerase/metabolism , Wnt Proteins/metabolism , Animals , Cell Line , Choristoma/genetics , Choristoma/pathology , DNA Helicases/metabolism , Genes, Reporter/genetics , HeLa Cells , Humans , Intestine, Small/metabolism , Mice , Nuclear Proteins/metabolism , Oocytes/cytology , Oocytes/growth & development , Plasmids/genetics , Promoter Regions, Genetic/genetics , Somites/abnormalities , Somites/embryology , Transcription Factors/metabolism , Wnt Proteins/genetics , Wnt3 Protein , Xenopus laevis/embryology , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...