Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 59(26): 7752-7759, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32976445

ABSTRACT

Trace element analysis of soft materials, to determine the content of low concentration elements, is important in many industries such as food quality control and medical biopsy analysis. Many of these applications would benefit from faster analysis with smaller sample requirements. Further, some natural samples are soft and have high water content, which brings challenges to element analysis. Here, we develop a cryogenic pelletization pretreatment to address those challenges. The soft samples are cryogenically milled, freeze-dried, and pelletized before elemental analysis. Analysis is performed by laser ablation spectroscopy, the combination of laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS), to rapidly analyze light and heavy analytes. For this initial study, aluminum (Al) content in soft samples is determined by LIBS and lead (Pb) content by LA-ICP-MS. The standard addition method is performed to build calibration curves for element quantification. The measurements are compared with a Hong Kong government certified acid digestion and ICP-MS procedure. The experiment is performed on standard reference materials and selected food samples. The relative errors compared with certified measurements are less than 10% for all samples, with Al content ranging from 63-1466 µg/g and Pb content from 0.37-2.35 µg/g (dry mass). Microscopy of pellets shows that laser ablation spectroscopy can be performed with 100 µg of sample (dry mass). Total analysis time from raw sample to final measurement, including preparation, is under 1 h. The results indicate that the laser ablation spectroscopy with cryogenic pelletization is a promising technique for many applications such as screening of small food samples for toxic metals and trace element analysis of millimeter biopsies.


Subject(s)
Food Contamination , Mass Spectrometry/methods , Spectrum Analysis/methods , Trace Elements/analysis , Aluminum Compounds/analysis , Laser Therapy , Lead/analysis , Reference Standards , Specimen Handling
2.
Chemosphere ; 64(7): 1177-84, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16403564

ABSTRACT

Partitioning behavior of the antifouling booster biocide, Irgarol-1051 (2-methythio-4-tert-butylamino-6-cyclopropylamino-s-triazine), its production by-product, M3, and its environmental transformation products, M1 and M2, were studied. Octanol-water partition coefficients, log K(OW), and organic matter-water partition coefficients, log K(OC), of these s-triazines were measured by reversed-phase HPLC and a triphasic SPME equilibrium model, respectively. The average log K(OW) (+/-SD) of the four s-triazine species were: 4.39+/-0.07 (M3); 3.38+/-0.12 (Irgarol-1051); 2.92+/-0.12 (M2) and 2.54+/-0.11 (M1), while mean log K(OC) (+/-SD) of these species were: 2.47+/-0.03 (M3); 2.16+/-0.03 (Irgarol-1051); 1.97+/-0.03 (M2) and 1.79+/-0.04 (M1). These results were compared to reported physicochemical parameters of Irgarol-1051 in the literature. Partitioning behavior of these s-triazine species in the coastal environment revealed by their K(OW) and K(OC) were also discussed.


Subject(s)
Pesticides/chemistry , Triazines/chemistry , 1-Octanol/chemistry , Chitin/chemistry , Chromatography, High Pressure Liquid , Hydrophobic and Hydrophilic Interactions , Models, Chemical , Water/chemistry , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...