Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Life Sci ; 75(23): 4269-4285, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29468257

ABSTRACT

Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection. This is somewhat surprising, as AurkB expression is generally associated only with dividing cells Frangini et al. (Mol Cell 51:647-661, 2013); Hegarat et al. (J Cell Biol 195:1103-1113, 2011); Lu et al. (J Biol Chem 283:31785-31790, 2008); Trakala et al. (Cell Cycle 12:1030-1041, 2014). Herein, we present the first description of a role for AurkB in terminally differentiated neurons. AurkB was prominently expressed within post-mitotic neurons of the zebrafish brain and spinal cord. The expression of AurkB varied during the development of the zebrafish spinal motor neurons. Utilising pharmacological and genetic manipulation to impair AurkB activity resulted in truncation and aberrant motor axon morphology, while overexpression of AurkB resulted in extended axonal outgrowth. Further pharmacological inhibition of AurkB activity in regenerating axons delayed their recovery following UV laser-mediated injury. Collectively, these results suggest a hitherto unreported role of AurkB in regulating neuronal development and axonal outgrowth.


Subject(s)
Aurora Kinase B/metabolism , Axons/physiology , Motor Neurons/metabolism , Nerve Regeneration/physiology , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Aurora Kinase B/antagonists & inhibitors , Aurora Kinase B/genetics , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Organophosphates/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Spinal Cord/cytology , Spinal Cord/embryology , Spinal Cord Injuries/genetics , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics
2.
J Biol Chem ; 288(14): 9696-9709, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23400779

ABSTRACT

Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ~52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.


Subject(s)
Calpain/chemistry , Gene Expression Regulation, Enzymologic , Neurons/metabolism , src-Family Kinases/chemistry , Animals , Brain Ischemia/pathology , Calpain/metabolism , Cell Death , Cell Membrane/metabolism , HEK293 Cells , Humans , Lentivirus/genetics , Male , Models, Biological , Mutation , Peptides/chemistry , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Signal Transduction , Stroke/enzymology , Stroke/pathology , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...