Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Bioeng ; 8(1): 63-75, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25914755

ABSTRACT

Endothelial cell (EC) aging and senescence are key events in atherogenesis and cardiovascular disease development. Age-associated changes in the local mechanical environment of blood vessels have also been linked to atherosclerosis. However, the extent to which cell senescence affects mechanical forces generated by the cell is unclear. In this study, we sought to determine whether EC senescence increases traction forces through age-associated changes in the glycocalyx and antioxidant regulator deacetylase Sirtuin1 (SIRT1), which is downregulated during aging. Traction forces were higher in cells that had undergone more population doublings and changes in traction force were associated with altered actin localization. Older cells also had increased actin filament thickness. Depletion of heparan sulfate in young ECs elevated traction forces and actin filament thickness, while addition of heparan sulfate to the surface of aged ECs by treatment with angiopoietin-1 had the opposite effect. While inhibition of SIRT1 had no significant effect on traction forces or actin organization for young cells, activation of SIRT1 did reduce traction forces and increase peripheral actin in aged ECs. These results show that EC senescence increases traction forces and alters actin localization through changes to SIRT1 and the glycocalyx.

2.
Cardiovasc Eng Technol ; 4(2): 220-230, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23833691

ABSTRACT

PURPOSE: We sought to determine the effect of stress-induced senescence on the permeability to albumin of aging endothelial progenitor cells. METHODS: Human umbilical cord blood derived endothelial cells (hCB-ECs) and human aortic endothelial cells (HAECs) were treated with 200 µM H2O2 and permeability to FITC-bovine serum albumin was measured. Some samples were subsequently treated with 100µM 8-pCPT-2'-O-Me-cAMP, a cAMP analog that activates the Epac1-Rap1 pathway. Cell proliferation was measured with the EdU assay. Phase contrast, and immunofluorescence images were taken to observe morphological changes in cells after exposure to H2O2. RESULTS: hCB-ECs exposed to H2O2 exhibited a significant increase in permeability, but their response differed from the HAECs. Low passage hCB-ECs had a permeability increase of about 82% (p<0.01) compared to aged cells which had a permeability increase of about 37% (p<0.05). This increase in permeability was reduced by treating the cells with 100 µM 8-pCPT-2'-O-Me-cAMP. The younger cells exhibited a significant decrease in proliferation after being subjected to various concentrations of H2O2 whereas the aged cells exhibited a more gradual decrease in the percent of cells in S-phase. These changes also correlated with changes in cell morphology and junction staining. When placed back in the original media, the morphology and permeability of the hCB-ECs returned to the control condition, while the HAECs did not. CONCLUSIONS: The permeability of low and high passage hCB-ECs and HAECs initially increases in response to oxidative stress. hCB-ECs, but not HAECs, were able to recover from the stress 24 hours later. Early passage hCB-ECs were more susceptible to exogenous H2O2 than late passage hCB-ECs. The increase in permeability of hCB-ECs to H2O2 also correlated with decreased cell proliferation and changes in cell junctions.

3.
Am J Physiol Heart Circ Physiol ; 303(11): H1374-83, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23023872

ABSTRACT

In this study, we tested the hypotheses that endothelial cells (ECs) derived from human umbilical cord blood (hCB-ECs) exhibit low permeability, which increases as hCB-ECs age and undergo senescence, and that the change in the permeability of hCB-ECs is due to changes in tight junction protein localization and the activity of exchange protein activated by cAMP (Epac)1. Albumin permeability across low-passage hCB-EC monolayers on Transwell membranes was 10 times lower than for human aortic ECs (HAECs) (P < 0.01) but similar to in vivo values in arteries. Expression of the tight junction protein occludin and tyrosine phosphorylation of occludin were less in hCB-ECs than in HAECs (P < 0.05). More hCB-ECs than HAECs underwent mitosis (P < 0.01). hCB-ECs that underwent >44 population doublings since isolation had a significantly higher permeability than hCB-ECs that underwent <31 population doublings (P < 0.05). This age-related increase in hCB-EC permeability was associated with an increase in tyrosine phosphorylation of occludin (P < 0.01); permeability and occludin phosphorylation were reduced by treatment with 2 µM resveratrol. Tyrosine phosphorylation of occludin and cell age influence the permeability of hCB-ECs, whereas levels of EC proliferation and expression of tight junction proteins did not explain the differences between hCB-EC and HAEC permeability. The elevated permeability in late passage hCB-ECs was reduced by 25-40% by elevation of membrane-associated cAMP and activation of the Epac1 pathway. Given the similarity to in vivo permeability to albumin and the high proliferation potential, hCB-ECs may be a suitable in vitro model to study transport-related pathologies and cell aging.


Subject(s)
Albumins/metabolism , Aorta/cytology , Cell Membrane Permeability/physiology , Cellular Senescence/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Fetal Blood/cytology , Cell Membrane Permeability/drug effects , Cell Proliferation , Cells, Cultured , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Humans , In Vitro Techniques , Occludin/metabolism , Phosphorylation , Resveratrol , Signal Transduction/physiology , Sirtuin 1/metabolism , Stilbenes/pharmacology , Tight Junction Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...