Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 209(Pt 22): 4429-35, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17079713

ABSTRACT

To characterize the effect of severe hypoxia on neuronal activity, long-term intracellular recordings were made from neurones in the isolated central ring ganglia of Lymnaea stagnalis. When a neurone at rest in normoxia was subjected to severe hypoxia, action potential firing frequency decreased by 38% (from 2.4-1.5 spikes s(-1)), and the resting membrane potential hyperpolarized from -70.3 to -75.1 mV. Blocking GABA(A) receptor-mediated synaptic transmission with the antagonist bicuculline methiodide (100 micromol l(-1)) decreased neuronal activity by 36%, and prevented any further changes in response to severe hypoxia, indicating that GABAergic neurotransmission mediates the severe hypoxia-induced decrease in neuronal activity. Puffing 100 micromol l(-1) GABA onto the cell body produced an excitatory response characterized by a transient increase in action potential (AP) firing, which was significantly decreased in severe hypoxia. Perturbing intracellular chloride concentrations with the Na+/K+/Cl- (NKCC1) cotransporter antagonist bumetanide (100 micromol l(-1)) decreased AP firing by 40%, consistent with GABA being an excitatory neurotransmitter in the adult Lymnaea CNS. Taken together, these studies indicate that severe hypoxia reduces the activity of NKCC1, leading to a reduction in excitatory GABAergic transmission, which results in a hyperpolarization of the resting membrane potential (Vm) and as a result decreased AP frequency.


Subject(s)
Ganglia, Invertebrate/physiology , Lymnaea/physiology , Neurons/physiology , gamma-Aminobutyric Acid/physiology , Action Potentials , Animals , Ganglia, Invertebrate/cytology , In Vitro Techniques , Oxygen
2.
Evol Dev ; 6(2): 114-22, 2004.
Article in English | MEDLINE | ID: mdl-15009124

ABSTRACT

The morphogenetic field, a fundamental concept of classical embryology, is once again being invoked to describe developmental processes. Because the evolution of adult structures requires the modification of development, the ways in which morphogenetic fields can change over time may yield insights into evolutionary possibilities. We considered how the duplication/multiplication of a morphogenetic field in fruit flies, caused by the previously described obake (obk) mutation, is regulated by genetic and environmental factors. Mutations of genes in the canonical antenna-producing imaginal disc pathway suppressed duplication as expected, although the results suggested that other pathways might also be involved. Overgrowth mutations, expected to increase duplication, actually suppressed it. Mutations in the heat-shock protein gene Hsp83 did not uniformly enhance obk expressivity as hypothesized. Using third chromosomes extracted from wild-derived lines, natural genetic variation for modifiers of obk function was found to be extensive. Larval crowding suppressed the obk phenotype, but there was no evidence of trade-offs between body or head size and arista number. Our results suggest that a complex interplay of genetic and environmental factors in the regulation of fields may be responsible for ample natural variation in the expressivity of adult phenotypes, affording multiple opportunities for selection and evolutionary modification.


Subject(s)
Animal Structures/embryology , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Gene Expression Regulation, Developmental , Phenotype , Alleles , Animals , Body Weights and Measures , Drosophila melanogaster/metabolism , Female , Genotype , Heat-Shock Proteins/metabolism , Morphogenesis , Mutation/genetics , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...