Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(10): e2300951, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37310697

ABSTRACT

Metal-organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium-based MOFs (Zr-MOFs), comprise a growing class of phosphatase-like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as-synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF-based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr-MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr-MOF nanozymes embedded in the structure, and hierarchical macro-micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine-tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus-based nerve agent simulants and pesticides from contaminated water.


Subject(s)
Metal-Organic Frameworks , Nanopores , Pesticides , Hydrolysis , Organophosphorus Compounds , Phosphoric Monoester Hydrolases
2.
Angew Chem Int Ed Engl ; 61(19): e202202207, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35212125

ABSTRACT

The fabrication of MOF polymer composite materials enables the practical applications of MOF-based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low-loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid- and solid-state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8-fold enhancement in the protection against an ultra-toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF-based protective gear against nerve agents.


Subject(s)
Metal-Organic Frameworks , Nerve Agents , Catalysis , Cellulose , Metal-Organic Frameworks/chemistry , Solvents
3.
J Am Chem Soc ; 143(40): 16777-16785, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34590851

ABSTRACT

The most recent global health crisis caused by the SARS-CoV-2 outbreak and the alarming use of chemical warfare agents highlight the necessity to produce efficient protective clothing and masks against biohazard and chemical threats. However, the development of a multifunctional protective textile is still behind to supply adequate protection for the public. To tackle this challenge, we designed multifunctional and regenerable N-chlorine based biocidal and detoxifying textiles using a robust zirconium metal-organic framework (MOF), UiO-66-NH2, as a chlorine carrier which can be easily coated on textile fibers. A chlorine bleaching converted the amine groups located on the MOF linker to active N-chlorine structures. The fibrous composite exhibited rapid biocidal activity against both Gram-negative bacteria (E. coli) and Gram-positive bacteria (S. aureus) with up to a 7 log reduction within 5 min for each strain as well as a 5 log reduction of SARS-CoV-2 within 15 min. Moreover, the active chlorine loaded MOF/fiber composite selectively and rapidly degraded sulfur mustard and its chemical simulant 2-chloroethyl ethyl sulfide (CEES) with half-lives less than 3 minutes. The versatile MOF-based fibrous composite designed here has the potential to serve as protective cloth against both biological and chemical threats.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Chemical Warfare Agents/chemistry , Chlorine/pharmacology , Metal-Organic Frameworks/pharmacology , Protective Clothing , Animals , Anti-Bacterial Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Cell Line , Chlorine/chemistry , Escherichia coli/drug effects , Halogenation , Humans , Metal-Organic Frameworks/chemical synthesis , Microbial Sensitivity Tests , Mustard Gas/analogs & derivatives , Mustard Gas/chemistry , Oxidation-Reduction , SARS-CoV-2/drug effects , Staphylococcus aureus/drug effects , Textiles , Zirconium/chemistry
4.
Adv Mater ; 33(35): e2100140, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34297447

ABSTRACT

Functional textiles with advanced moisture management can enhance human comfort and physiological health. However, conventional wet finishing processes used for textiles are usually highly polluting and exhibit poor fastness. Inspired by the strong underwater adhesion properties of mussels based on cation-π interaction, a novel superhydrophilic polymeric molecule with strong cohesion and adhesion property is designed on a poly(ethylene terephthalate) (PET) fabric. The cation-π hydrophilic agent (CPHA) can efficiently transform the hydrophobic PET fabric to a superhydrophilic one, and its superhydrophilicity can withstand 150 home laundry cycles. In addition, the cationic moieties in the CPHA self-adhere to the PET fabric without any finishing auxiliary that would cause pollution. Due to its strong adhesion, CPHA can be applied to one side of the PET fabric via spray coating and curing to form a Janus hydrophobic/superhydrophilic fabric capable of diode-like one-way sweat transportation (with forward transportation capability of 1115% and backward transportation capability of -1509%). Moreover, the Janus fabric inhibits bacterial growth and invasion, while simultaneously preserving the inner ecological healthy balance of the skin's microflora. This work opens up a pathway to develop adhesives in textile wet processing for more diverse, smarter applications, e.g., quick-dry sportswear, protective suits, or air-conditioning fabrics.


Subject(s)
Textiles , Hydrophobic and Hydrophilic Interactions , Resin Cements
SELECTION OF CITATIONS
SEARCH DETAIL
...