Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Toxicol ; 30(2): 162-73, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21300768

ABSTRACT

The discussion on whether the Sprague Dawley (SD), the Fischer F344, or the Hannover Wistar rat is the most appropriate model for toxicity studies in rodents is ongoing. A substantial quantity of data on these strains concerning their source, diet, and housing conditions have been published. Generally, before starting a toxicology program in rodents, it should be taken into account that oncogenicity studies will be required for the majority of compounds successfully completing development. Survival, body weight development, incidence, type, time of onset of age-dependent lesions and neoplasms, as well as some special considerations of the rat model selected may be decisive. Therefore, an understanding of the historical background data is essential. These aspects demonstrate why the use of a specific rat model should be carefully considered at the beginning of the toxicology program.


Subject(s)
Models, Animal , Neoplasms, Experimental/pathology , Toxicity Tests/methods , Animals , Body Weight , Carcinogens/metabolism , Carcinogens/toxicity , Female , Male , Neoplasms, Experimental/chemically induced , Organ Size , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar
2.
J Toxicol Pathol ; 24(2): 113-24, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22272050

ABSTRACT

Many variables may affect the outcome of continuous infusion studies. The results largely depend on the experience of the laboratory performing these studies, the technical equipment used, the choice of blood vessels and hence the surgical technique as well the quality of pathological evaluation. The latter is of major interest due to the fact that the pathologist is not involved until necropsy in most cases, i.e. not dealing with the complicated surgical or in-life procedures of this study type. The technique of tissue sampling during necropsy and the histology processing procedures may influence the tissues presented for evaluation, hence the pathologist may be a source of misinterpretation. Therefore, ITO proposes a tissue sampling procedure and a standard nomenclature for pathological lesions for all sites and tissues in contact with the port-access and/or catheter system.

3.
J Toxicol Pathol ; 24(3): 149-62, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22272055

ABSTRACT

Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m(3)), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m(3), 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m(3). At 1 and 4 mg/m(3), exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide.

4.
Radiat Res ; 168(4): 480-92, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17903030

ABSTRACT

A total of 1170 rats comprised of 65 male and 65 female Han Wistar rats per group were exposed for 2 h/day, 5 days/ week for up to 104 weeks to GSM or DCS wireless communication signals at three nominal SARs of 0.44, 1.33 and 4.0 W/kg. A preliminary study confirmed that the highest exposure level was below that which was capable of causing a measurable increase in the core temperature of the rat. Additional groups for each modulation were sham exposed, and there was also an unrestrained, unexposed (cage) control group. Fifteen male and 15 female rats per group were killed after 52 weeks. From the remaining 50 male and 50 female rats per group, surviving animals were killed after 104 weeks. Evaluations during the study included mortality rate, clinical signs, recording of palpable masses, body weight, food consumption, ophthalmoscopic examination, and clinical pathological investigations. Terminal investigations included organ weight measurement and macroscopic and microscopic pathology examinations. There was no adverse response to the wireless communication signals. In particular, there were no significant differences in the incidence of primary neoplasms, the number of rats with more than one primary neoplasm, the multiplicity and latency of neoplasms, the number of rats with metastases, and the number of benign and malignant neoplasms between the rats exposed to wireless communication signals and rats that were sham exposed.


Subject(s)
Cell Phone , Electromagnetic Fields/adverse effects , Neoplasms, Experimental/etiology , Neoplasms, Radiation-Induced/etiology , Radio Waves/adverse effects , Animals , Eating/radiation effects , Female , Male , Organ Size/radiation effects , Radiometry , Rats , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...